Reactive antioxidants for peroxide crosslinked polyethylene

被引:31
作者
Al-Malaika, S. [1 ]
Riasat, S. [1 ]
Lewucha, C. [1 ]
机构
[1] Aston Univ, Polymer Proc & Performance Res Unit, Aston Inst Mat Res, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England
关键词
Crosslinked polyethylene; Reactive antioxidants; PEX pipes; Antioxidant performance; HIGH-DENSITY POLYETHYLENE; HOT-WATER PIPES; DRINKING-WATER; PHENOLIC ANTIOXIDANTS; CROSSLINKING; DIFFUSION; OXIDATION; LIFETIME; SYSTEMS; PEX;
D O I
10.1016/j.polymdegradstab.2017.04.013
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Three synthesised reactive (graftable) antioxidants, r-AO, with hindered phenol and hindered amine antioxidant functions, were examined for their grafting efficiency in polyethylene and their retention and stabilising performance in peroxide-crosslinked polyethylene pipe material. Their level of grafting in uncrosslinked high density polyethylene, HDPE, and the extent of their retention in highly peroxide-crosslinked HDPE (PEXa) material (both laboratory prepared samples and PEXa pipes produced by commercial processes) were determined after stringent solvent extraction methodologies. The uniformity of distribution of the r-AOs in the PEXa pipes (across the length and thickness of the pipes) were examined using infrared-microscopy and compared with similarly produced PEXa pipes containing commercial antioxidants having the same antioxidant functions. The extent of interference of the graftable hindered phenol and hindered amine antioxidants with the peroxide crosslinking process in the PEXa materials was assessed by comparing the level of crosslinking achieved. against analogously prepared samples containing a conventional hindered phenol antioxidant (Irganox 1076). The results obtained showed that the presence of the graftable (r-AOs) antioxidants did not affect the level of crosslinking of the PEXa pipes which remained high (>85%) and that they were retained to a very high extent in the PEXa material after solvent extraction, and are very uniformly distributed across the length and thickness of PEXa pipes. The long-term stabilising performance of the graftable r-AOs in the PEXa material (in both laboratory prepared samples and in peroxide crosslinked pipes produced by commercial processes) was also examined using complimentary methods: oxidative induction time (OIT) before and after solvent extraction, physical embrittlement following oven ageing at 125 degrees C, as well as by a hydrostatic pressure tests conducted (with water inside and air outside) at 115 degrees C and 2.5 MPa pressure. The stabilising efficacy of the r-AOs was compared with that of conventionally stabilised PEXa material containing analogous antioxidant functions produced in the same way. The level of retention (in the pipes) of the graftable antioxidants and their long-term stabilising performance was shown to be significantly higher than that of the conventional AOs under all the test conditions used here. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:11 / 24
页数:14
相关论文
共 25 条
  • [1] Al-Malaika S., 1989, Comprehensive Polymer Science, P539
  • [2] Andersson U., 2001, P PLAST PIPES, VXI, P311
  • [3] [Anonymous], 1992, 9080 ISOTR
  • [4] Identification of organic compounds migrating from polyethylene pipelines into drinking water
    Brocca, D
    Arvin, E
    Mosbaek, H
    [J]. WATER RESEARCH, 2002, 36 (15) : 3675 - 3680
  • [5] INFLUENCE OF THE ADDITIVES ON POLYETHYLENE CROSSLINKING INITIATED BY PEROXIDES
    CHODAK, I
    ROMANOV, A
    RATZSCH, M
    HAUDEL, G
    [J]. ACTA POLYMERICA, 1987, 38 (12) : 672 - 674
  • [6] Novel organo-modifier for thermally-stable polymer-layered silicate nanocomposites
    Dintcheva, N. Tz
    Al-Malaika, S.
    Morici, E.
    [J]. POLYMER DEGRADATION AND STABILITY, 2015, 122 : 88 - 101
  • [7] Vitamin E-stabilised UHMWPE for orthopaedic implants: Quantitative determination of vitamin E and characterisation of its transformation products
    Doudin, K.
    Al-Malaika, S.
    [J]. POLYMER DEGRADATION AND STABILITY, 2016, 125 : 59 - 75
  • [8] ENGEL T, 1967, MOD PLAST, V45, P175
  • [9] Eriksson P., 1985, P PLASTIC PIPES 6 B, V40B, P1
  • [10] LONG-TERM PROPERTIES OF HOT-WATER POLYOLEFIN PIPES - A REVIEW
    GEDDE, UW
    VIEBKE, J
    LEIJSTROM, H
    IFWARSON, M
    [J]. POLYMER ENGINEERING AND SCIENCE, 1994, 34 (24) : 1773 - 1787