A cluster grouping technique for texture segmentation

被引:0
作者
Manduchi, R [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
来源
15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING | 2000年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an algorithm for texture segmentation based on a divide-and-conquer strategy of statistical modeling. Selected sets of Gaussian clusters, estimated via Expectation Maximization on the texture features, are grouped together to form composite texture classes. Our cluster grouping technique exploits the inherent local spatial correlation among posterior distributions of clusters belonging to the same texture class. Despite its simplicity, this algorithm can model even very complex distributions, typical of natural outdoor images.
引用
收藏
页码:1060 / 1063
页数:4
相关论文
共 6 条
  • [1] BESAG J, 1986, J R STAT SOC B, V48, P259
  • [2] Malik J., 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision, P918, DOI 10.1109/ICCV.1999.790346
  • [3] Manduchi R., 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision, P956, DOI 10.1109/ICCV.1999.790351
  • [4] McLachlan G. J., 1997, EM ALGORITHM EXTENSI
  • [5] MAXIMUM-LIKELIHOOD PARAMETER-ESTIMATION FOR UNSUPERVISED STOCHASTIC MODEL-BASED IMAGE SEGMENTATION
    ZHANG, J
    MODESTINO, JW
    LANGAN, DA
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1994, 3 (04) : 404 - 420
  • [6] ZHANG J, 1991, P IEEE ISIT