Control of Localized Surface Plasmon Resonances in Metal Oxide Nanocrystals

被引:170
作者
Agrawal, Ankit [1 ]
Johns, Robert W. [1 ,2 ]
Milliron, Delia J. [1 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
来源
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 47 | 2017年 / 47卷
关键词
nanocrystal; doping; plasmonics; near-field enhancement; LSPR; infrared; INDIUM-TIN-OXIDE; DOPED CADMIUM-OXIDE; OPTICAL-PROPERTIES; ZNO NANOCRYSTALS; COLLOIDAL NANOCRYSTALS; GOLD NANOPARTICLES; INFRARED-ABSORPTION; FIELD ENHANCEMENT; THIN-FILMS; SHAPE;
D O I
10.1146/annurev-matsci-070616-124259
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metal oxides, when electronically doped with oxygen vacancies, aliovalent dopants, or interstitial dopants, can exhibit metallic behavior due to the stabilization of a substantial charge carrier concentration within the material. As a result, localized surface plasmon resonances (LSPRs) occur in nanocrystals of conducting metal oxides. Through deliberate choice of both the host material and the defect, these resonances can be tuned across the entirety of the near-and mid-infrared regions of the electromagnetic spectrum. Optical modeling has revealed that the defects present have profound impacts on charge carrier mobility and electronic structure, and in some cases, choosing one dopant over another is an important trade-off for optimizing plasmonic performance. These materials are distinct from classical metals in that one can tune their LSPR in energy and intensity through their elemental composition independently of any particular size or nanocrystal morphology. In addition, the LSPR in these materials is highly modulable through external stimuli over substantial spectral windows. As a result, these materials uniquely provide a responsive plasmonic material that can offer optimal nanocrystal arrangements and morphology without compromising the intended resonance frequency for light concentration at any infrared wavelength.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 139 条
[1]   Surface-Enhanced Infrared Spectroscopy Using Metal Oxide Plasmonic Antenna Arrays [J].
Abb, Martina ;
Wang, Yudong ;
Papasimakis, Nikitas ;
de Groot, C. H. ;
Muskens, Otto L. .
NANO LETTERS, 2014, 14 (01) :346-352
[2]   In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas [J].
Adato, Ronen ;
Altug, Hatice .
NATURE COMMUNICATIONS, 2013, 4
[3]   Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays [J].
Adato, Ronen ;
Yanik, Ahmet A. ;
Amsden, Jason J. ;
Kaplan, David L. ;
Omenetto, Fiorenzo G. ;
Hong, Mi K. ;
Erramilli, Shyamsunder ;
Altug, Hatice .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) :19227-19232
[4]   Shape-Dependent Field Enhancement and Plasmon Resonance of Oxide Nanocrystals [J].
Agrawal, Ankit ;
Kriegel, Ilka ;
Milliron, Delia J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (11) :6227-6238
[5]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[6]   Transparent conducting oxides for electro-optical plasmonic modulators [J].
Babicheva, Viktoriia E. ;
Boltasseva, Alexandra ;
Lavrinenko, Andrei V. .
NANOPHOTONICS, 2015, 4 (02) :165-185
[7]   Polymer-Nanoparticle Electrochromic Materials that Selectively Modulate Visible and Near-Infrared Light [J].
Barile, Christopher J. ;
Slotcavage, Daniel J. ;
McGehee, Michael D. .
CHEMISTRY OF MATERIALS, 2016, 28 (05) :1439-1445
[8]   Ultrabroadband infrared nanospectroscopic imaging [J].
Bechtel, Hans A. ;
Muller, Eric A. ;
Olmon, Robert L. ;
Martin, Michael C. ;
Raschke, Markus B. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (20) :7191-7196
[9]   The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing [J].
Becker, Jan ;
Truegler, Andreas ;
Jakab, Arpad ;
Hohenester, Ulrich ;
Soennichsen, Carsten .
PLASMONICS, 2010, 5 (02) :161-167
[10]  
Bermel P, 2015, OPT EXPRESS, V23, P1533, DOI [10.1364/OE.23.01533, 10.1364/OE.23.0A1533]