Naturally reductive homogeneous Randers spaces

被引:8
作者
Latifi, Dariush [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Math, Ardebil, Iran
关键词
Invariant Randers metric; Naturally reductive space; Homogeneous geodesic; Flag curvature; RIEMANNIAN-MANIFOLDS; FINSLER-SPACES; METRICS;
D O I
10.1016/j.geomphys.2010.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study naturally reductive Randers metrics on homogeneous manifolds. We first prove that naturally reductive Randers metrics are of Berwald type. We then give an explicit formula for the flag curvature of naturally reductive Randers metrics. Finally a necessary and sufficient condition for invariant Randers metrics on homogeneous manifolds being naturally reductive is given. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1968 / 1973
页数:6
相关论文
共 20 条
[1]  
Bao D, 2004, J DIFFER GEOM, V66, P377
[2]  
Bao D., 2004, PERIOD MATH HUNGAR, V48, P3, DOI [10.1023/B:MAHU.0000038961.86165.30, DOI 10.1023/B:MAHU.0000038961.86165.30]
[3]  
Bao D., 2000, An introduction to RiemannFinsler geometry
[4]  
D'Atri J., 1979, MEM AM MATH SOC, P215
[5]   Naturally reductive homogeneous Finsler spaces [J].
Deng, Shaoqiang ;
Hou, Zixin .
MANUSCRIPTA MATHEMATICA, 2010, 131 (1-2) :215-229
[6]   Invariant randers metrics on homogeneous Riemannian manifolds (vol 37, pg 4353, 2004) [J].
Deng, SQ ;
Hou, ZX .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (18) :5249-5250
[7]   Invariant Finsler metrics on homogeneous manifolds [J].
Deng, SQ ;
Hou, ZX .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (34) :8245-8253
[8]   Flag curvature of invariant Randers metrics on homogeneous manifolds [J].
Esrafilian, E. ;
Moghaddam, H. R. Salimi .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (13) :3319-3324
[9]   NATURALLY REDUCTIVE HOMOGENEOUS RIEMANNIAN-MANIFOLDS [J].
GORDON, CS .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1985, 37 (03) :467-487
[10]  
Gray A, 1972, J DIFFER GEOM, V7, P343