Pinch Analysis for Heat Integration of Pulverized Coke Chemical Looping Gasification Coupled with Coke-Oven Gas to Methanol and Ammonia

被引:6
作者
Zhao, Yaxian [1 ,2 ,3 ,4 ]
Zhao, Yingjie [1 ,2 ]
Huang, Yi [4 ]
Wang, Jiancheng [1 ,2 ]
Bao, Weiren [1 ,2 ]
Chang, Liping [1 ,2 ]
Shi, Lijuan [4 ]
Yi, Qun [4 ,5 ]
机构
[1] Taiyuan Univ Technol, State Key Lab Clean & Efficient Coal Utilizat, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Key Lab Coal Sci & Technol, Minist Educ, Taiyuan 030024, Peoples R China
[3] Jinzhong Univ, Dept Mech, Jinzhong 030619, Peoples R China
[4] Wuhan Inst Technol, Sch Chem Engn & Pharm, Wuhan 430205, Peoples R China
[5] Shanxi Zheda Inst Adv Mat & Chem Engn, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
coke-oven gas; methanol; ammonia; pinch analysis; heat exchanger network; heat integration; EXCHANGER NETWORKS; PROCESS SIMULATION; CO2; RECYCLE; ENERGY; HYDROGEN; DESIGN; SYNGAS; EXERGY; POWER; POLYGENERATION;
D O I
10.3390/pr10091879
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Methanol and ammonia are important chemical materials in the chemical industry. During the production of methanol and ammonia, a large amount of waste heat is released. The waste heat can be used to save energy and reduce CO2 emissions. In this study, pinch analysis is used to design the heat exchanger network (HEN) of pulverized coke (PC) chemical looping gasification coupled with coke-oven gas (COG) to methanol and ammonia (PCCLHG-CGTMA). The heat integration process is accomplished in two ways, as mentioned below. (1) The HENs in each of the three heat exchange units are designed individually; (2) the HENs of the three heat exchange units are treated as a whole and designed simultaneously. Compared to the HEN designed individually, when the HENs are designed as a whole, a total of 112.12 MW of hot and cold utilities are saved. In the HENs designed as a whole, the reduction in operating cost is sufficient to offset the increase in capital cost; the total annual cost (TAC) is reduced by 10.9%. These results reveal that the HENs designed as a whole have more scope for energy saving, which can be a reference for new HEN design and modification to realize more heat recovery and lower investment.
引用
收藏
页数:21
相关论文
共 60 条
[1]   A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress [J].
Abuelgasim, Siddig ;
Wang, Wenju ;
Abdalazeez, Atif .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 764
[2]   Progress in Chemical-Looping Combustion and Reforming technologies [J].
Adanez, Juan ;
Abad, Alberto ;
Garcia-Labiano, Francisco ;
Gayan, Pilar ;
de Diego, Luis F. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2012, 38 (02) :215-282
[3]   A process integration targeting method for hybrid power systems [J].
Alwi, Sharifah Rafidah Wan ;
Rozali, Nor Erniza Mohammad ;
Abdul-Manan, Zainuddin ;
Klemes, Jiri Jaromir .
ENERGY, 2012, 44 (01) :6-10
[4]   Energy Level Composite Curves-a new graphical methodology for the integration of energy intensive processes [J].
Anantharaman, R ;
Abbas, OS ;
Gundersen, T .
APPLIED THERMAL ENGINEERING, 2006, 26 (13) :1378-1384
[5]   Heat integration options based on pinch and exergy analyses of a thermosolar and heat pump in a fish tinning industrial process [J].
Antonio Quijera, Jose ;
Garcia, Araceli ;
Gonzalez Alriols, Maria ;
Labidi, Jalel .
ENERGY, 2013, 55 :23-37
[6]   Control structure design for the ammonia synthesis process [J].
Araujo, Antonio ;
Skogestad, Sigurd .
COMPUTERS & CHEMICAL ENGINEERING, 2008, 32 (12) :2920-2932
[7]   An Extended Pinch Analysis and Design procedure utilizing pressure based exergy for subambient cooling [J].
Aspelund, Audun ;
Berstad, David Olsson ;
Gundersen, Truls .
APPLIED THERMAL ENGINEERING, 2007, 27 (16) :2633-2649
[8]   Applying pinch and exergy analysis for energy efficient design of diesel hydrotreating unit [J].
Bandyopadhyay, Rajarshi ;
Alkilde, Ole Frej ;
Upadhyayula, Sreedevi .
JOURNAL OF CLEANER PRODUCTION, 2019, 232 :337-349
[9]   Reducing the cost, environmental impact and energy consumption of biofuel processes through heat integration [J].
Brunet, Robert ;
Boer, Dieter ;
Guillen-Gosalbez, Gonzalo ;
Jimenez, Laureano .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2015, 93 :203-212
[10]   Integration of thermo-vapor compressors with phenol and ammonia recovery process for coal gasification wastewater treatment system [J].
Chen Bokun ;
Qian Yu ;
Yang Siyu .
ENERGY, 2019, 166 :108-117