Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions

被引:124
作者
Zuther, Ellen [1 ]
Schulz, Elisa [1 ]
Childs, Liam H. [1 ]
Hincha, Dirk K. [1 ]
机构
[1] Max Planck Inst Mol Pflanzenphysiol, D-14476 Potsdam, Germany
关键词
cold acclimation; cold-regulated genes; compatible solutes; natural genetic variation; PSEUDO-RESPONSE REGULATORS; CIRCADIAN CLOCK; GENE-EXPRESSION; NATURAL VARIATION; TRANSCRIPTION FACTORS; POPULATION-STRUCTURE; ASSOCIATION; HETEROSIS; CBF2; METABOLOME;
D O I
10.1111/j.1365-3040.2012.02522.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabidopsis thaliana is a geographically widely spread species consisting of local accessions differing both genetically and phenotypically. These differences may constitute environmental adaptations and a latitudinal cline in freezing tolerance has been shown previously. Many plants, including Arabidopsis, exhibit increased freezing tolerance after cold exposure (cold acclimation). Here we present evidence for geographical clines (both latitudinal and longitudinal) in acclimated (ACC) and non-acclimated (NA) freezing tolerance, estimated from electrolyte leakage measurements on 54 accessions. Leaf Pro contents were not correlated with freezing tolerance, while sugar contents (Glc, Fru, Suc, Raf) were in the ACC, but not the NA state. Expression levels of 14 cold-induced genes were investigated before and after 2 weeks of cold acclimation by quantitative RT-PCR. Expression of the CBF1, 2 and 3 genes was not correlated with freezing tolerance. The expression of some CBF-regulated (COR) genes, however, was correlated specifically with ACC freezing tolerance. A tight correlation between CBF and COR gene expression was only observed under non-acclimating conditions, where CBF and COR expression were also correlated with the expression of PRR5, a component of the circadian clock. Collectively, this study sheds new light on the molecular determinants of plant-freezing tolerance and cold acclimation and their geographical dependence.
引用
收藏
页码:1860 / 1878
页数:19
相关论文
共 61 条
[1]   Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines [J].
Atwell, Susanna ;
Huang, Yu S. ;
Vilhjalmsson, Bjarni J. ;
Willems, Glenda ;
Horton, Matthew ;
Li, Yan ;
Meng, Dazhe ;
Platt, Alexander ;
Tarone, Aaron M. ;
Hu, Tina T. ;
Jiang, Rong ;
Muliyati, N. Wayan ;
Zhang, Xu ;
Amer, Muhammad Ali ;
Baxter, Ivan ;
Brachi, Benjamin ;
Chory, Joanne ;
Dean, Caroline ;
Debieu, Marilyne ;
de Meaux, Juliette ;
Ecker, Joseph R. ;
Faure, Nathalie ;
Kniskern, Joel M. ;
Jones, Jonathan D. G. ;
Michael, Todd ;
Nemri, Adnane ;
Roux, Fabrice ;
Salt, David E. ;
Tang, Chunlao ;
Todesco, Marco ;
Traw, M. Brian ;
Weigel, Detlef ;
Marjoram, Paul ;
Borevitz, Justin O. ;
Bergelson, Joy ;
Nordborg, Magnus .
NATURE, 2010, 465 (7298) :627-631
[2]   RAPID DETERMINATION OF FREE PROLINE FOR WATER-STRESS STUDIES [J].
BATES, LS ;
WALDREN, RP ;
TEARE, ID .
PLANT AND SOIL, 1973, 39 (01) :205-207
[3]   A Coastal Cline in Sodium Accumulation in Arabidopsis thaliana Is Driven by Natural Variation of the Sodium Transporter AtHKT1;1 [J].
Baxter, Ivan ;
Brazelton, Jessica N. ;
Yu, Danni ;
Huang, Yu S. ;
Lahner, Brett ;
Yakubova, Elena ;
Li, Yan ;
Bergelson, Joy ;
Borevitz, Justin O. ;
Nordborg, Magnus ;
Vitek, Olga ;
Salt, David E. .
PLOS GENETICS, 2010, 6 (11)
[4]   Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome [J].
Bieniawska, Zuzanna ;
Espinoza, Carmen ;
Schlereth, Armin ;
Sulpice, Ronan ;
Hincha, Dirk K. ;
Hannah, Matthew A. .
PLANT PHYSIOLOGY, 2008, 147 (01) :263-279
[5]   A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis [J].
Cook, D ;
Fowler, S ;
Fiehn, O ;
Thomashow, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (42) :15243-15248
[6]   The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis [J].
Davletova, S ;
Schlauch, K ;
Coutu, J ;
Mittler, R .
PLANT PHYSIOLOGY, 2005, 139 (02) :847-856
[7]   Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6 [J].
Devaiah, Ballachanda N. ;
Nagarajan, Vinay K. ;
Raghothama, Kashchandra G. .
PLANT PHYSIOLOGY, 2007, 145 (01) :147-159
[8]   CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis [J].
Dong, Malia A. ;
Farre, Eva M. ;
Thomashow, Michael F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (17) :7241-7246
[9]   Interaction with Diurnal and Circadian Regulation Results in Dynamic Metabolic and Transcriptional Changes during Cold Acclimation in Arabidopsis [J].
Espinoza, Carmen ;
Degenkolbe, Thomas ;
Caldana, Camila ;
Zuther, Ellen ;
Leisse, Andrea ;
Willmitzer, Lothar ;
Hincha, Dirk K. ;
Hannah, Matthew A. .
PLOS ONE, 2010, 5 (11)
[10]   A Map of Local Adaptation in Arabidopsis thaliana [J].
Fournier-Level, A. ;
Korte, A. ;
Cooper, M. D. ;
Nordborg, M. ;
Schmitt, J. ;
Wilczek, A. M. .
SCIENCE, 2011, 334 (6052) :86-89