Sparse Multinomial Logistic Regression via Approximate Message Passing

被引:12
作者
Byrne, Evan [1 ]
Schniter, Philip [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Classification; feature selection; multinomial logistic regression (MLR); belief propagation; approximate message passing; ALGORITHMS; CLASSIFICATION; SELECTION;
D O I
10.1109/TSP.2016.2593691
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For the problem of multi class linear classification and feature selection, we propose approximate message passing approaches to sparse multinomial logistic regression (MLR). First, we propose two algorithms based on the Hybrid Generalized Approximate Message Passing framework: one finds the maximum a posteriori linear classifier and the other finds an approximation of the test-error-rate minimizing linear classifier. Then we design computationally simplified variants of these two algorithms. Next, we detail methods to tune the hyperparameters of their assumed statistical models using Stein's unbiased risk estimate and expectation-maximization, respectively. Finally, using both synthetic and real-world datasets, we demonstrate improved error-rate and runtime performance relative to existing state-of-the-art approaches to sparse MLR.
引用
收藏
页码:5485 / 5498
页数:14
相关论文
共 42 条
[1]  
[Anonymous], 1999, Athena scientific Belmont
[2]  
[Anonymous], P NEUR INF PROC SYST
[3]  
[Anonymous], 2007, CONJOINT MEASUREMENT
[4]  
[Anonymous], 2010, P 44 IEEE C INF SCI
[5]  
[Anonymous], CANC CELL
[6]  
[Anonymous], COMPUTATIONAL COGNIT
[7]  
[Anonymous], THESIS
[8]  
[Anonymous], P INT C ART NEUR NET
[9]  
[Anonymous], 2013, ARXIV13110035
[10]  
[Anonymous], P NEUR INF PROC SYST