Using CNN with Bayesian optimization to identify cerebral micro-bleeds

被引:25
作者
Doke, Piyush [1 ,2 ]
Shrivastava, Dhiraj [3 ]
Pan, Chichun [4 ]
Zhou, Qinghua [5 ]
Zhang, Yu-Dong [1 ,5 ,6 ]
机构
[1] Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo, Henan, Peoples R China
[2] Indian Inst Technol Goa, Sch Math & Comp Sci, Veling, Goa, India
[3] Indian Inst Technol Varanasi, Dept Mech Engn, Varanasi, Uttar Pradesh, India
[4] Nanjing Normal Univ, Sch Business, Nanjing, Jiangsu, Peoples R China
[5] Univ Leicester, Dept Informat, Leicester, Leics, England
[6] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Syst, Jeddah, Saudi Arabia
基金
英国医学研究理事会;
关键词
Cerebral micro-bleeding; CNN; Convolution filters; ReLU; Softmax; Max pooling; Batch normalization; Bayesian optimization; Gaussian process regression; Acquisition function; Image augmentation; NEURAL-NETWORK; MICROBLEEDS; MR;
D O I
10.1007/s00138-020-01087-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article studies the problem of detecting cerebral micro-bleeds (CMBs) using a convolutional neural network (CNN). Cerebral micro-bleeds (CMBs) are increasingly recognized neuroimaging findings, occurring with cerebrovascular diseases, dementia, and normal aging. Naturally enough, it becomes necessary to detect CMBs in the early stages of life. The focus of this article is to infuse new techniques like Bayesian optimization to find the optimum set of hyper-parameters efficiently, making even the simplest of CNN architectures perform well on the problem. Experimentally, we observe our CNN (five layers, i.e., two convolution, two pooling, and one fully connected) achieves accuracy = 98.97%, sensitivity = 99.66%, specificity = 98.14%, and precision = 98.54% on the test set (hold-out validation) when calculated over an average of ten runs. The proposed model outperformed state-of-the-art methods.
引用
收藏
页数:14
相关论文
共 31 条
[1]   SybilTrap: A graph-based semi-supervised Sybil defense scheme for online social networks [J].
Al-Qurishi, Muhammad ;
Rahman, Sk Md Mizanur ;
Alamri, Atif ;
Mostafa, Mohamed A. ;
Al-Rubaian, Majed ;
Hossain, M. Shamim ;
Gupta, B. B. .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (05)
[2]   Ensemble-classifiers-assisted detection of cerebral microbleeds in brain MRI [J].
Ateeq, Tayyab ;
Majeed, Muhammad Nadeem ;
Anwar, Syed Muhammad ;
Maqsood, Muazzam ;
Rehman, Zahoor-ur ;
Lee, Jong Weon ;
Muhammad, Khan ;
Wang, Shuihua ;
Baik, Sung Wook ;
Mehmood, Irfan .
COMPUTERS & ELECTRICAL ENGINEERING, 2018, 69 :768-781
[3]   Semiautomated detection of cerebral microbleeds in magnetic resonance images [J].
Barnes, Samuel R. S. ;
Haacke, E. Mark ;
Ayaz, Muhammad ;
Boikov, Alexander S. ;
Kirsch, Wolff ;
Kido, Dan .
MAGNETIC RESONANCE IMAGING, 2011, 29 (06) :844-852
[4]   Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images [J].
Bian, Wei ;
Hess, Christopher P. ;
Chang, Susan M. ;
Nelson, Sarah J. ;
Lupo, Janine M. .
NEUROIMAGE-CLINICAL, 2013, 2 :282-290
[5]  
Chen H., 2015, 2015 IEEE 12 INT S B
[6]   Prevalence and severity of microbleeds in a memory clinic setting [J].
Cordonnier, C ;
van der Flier, WM ;
Sluimer, JD ;
Leys, D ;
Barkhof, F ;
Scheltens, P .
NEUROLOGY, 2006, 66 (09) :1356-1360
[7]   Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting [J].
Cordonnier, Charlotte ;
Salman, Rustarn Ai-Shahi ;
Wardlaw, Joanna .
BRAIN, 2007, 130 :1988-2003
[8]  
Fazlollahi A., 2014, IEEE 11 INT S BIOM I
[9]   Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging [J].
Fazlollahi, Amir ;
Meriaudeau, Fabrice ;
Giancardo, Luca ;
Villemagne, Victor L. ;
Rowe, Christopher C. ;
Yates, Paul ;
Salvado, Olivier ;
Bourgeat, Pierrick .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 46 :269-276
[10]   Cerebral microbleeds: old leaks and new haemorrhages [J].
Fiehler, Jens .
INTERNATIONAL JOURNAL OF STROKE, 2006, 1 (03) :122-130