A description of incidence rings of group automata

被引:0
作者
Kelarev, A. V. [1 ]
Passman, D. S. [2 ]
机构
[1] Univ Ballarat, Sch Informat Technol & Math Sci, POB 663, Ballarat, Vic 3353, Australia
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
来源
NONCOMMUTATIVE RINGS, GROUP RINGS, DIAGRAM ALGEBRAS AND THEIR APPLICATIONS | 2008年 / 456卷
基金
澳大利亚研究理事会;
关键词
group automata; incidence rings; group rings;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Group automata occur in the Krohn-Rhodes Decomposition Theorem and have been extensively investigated in the literature. The incidence rings of group automata were introduced by the first author in analogy with group rings and incidence rings of graphs. The main theorem of the present paper gives a complete description of the structure of incidence rings of group automata in terms of matrix rings over group rings and their natural modules. As a consequence, when the ground ring is a field, we can use known group algebra results to determine when the incidence algebra is prime, semiprime, Artinian or semisimple. We also offer sufficient conditions for the algebra to be semiprimitive.
引用
收藏
页码:27 / +
页数:2
相关论文
共 15 条
[1]   PSPACE-complete problems for subgroups of free groups and inverse finite automata [J].
Birget, JC ;
Margolis, S ;
Meakin, J ;
Weil, P .
THEORETICAL COMPUTER SCIENCE, 2000, 242 (1-2) :247-281
[2]  
BIRGET JC, 2000, ALGORITHMIC PROBLEMS
[3]   Combinatorial group theory, inverse monoids, automata, and global semigroup theory [J].
Delgado, M ;
Margolis, S ;
Steinberg, B .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2002, 12 (1-2) :179-211
[4]  
Howie J. M., 1991, AUTOMATA LANGUAGES
[5]  
Ito M., 2004, ALGEBRAIC THEORY AUT
[6]  
Kelarev A. V., 2002, RING CONSTRUCTIONS A
[7]   On the structure of incidence rings of group automata [J].
Kelarev, AV .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2004, 14 (04) :505-511
[8]  
Lidl R., 1998, APPL ABSTRACT ALGEBR
[9]  
Margolis S. W., 1993, International Journal of Algebra and Computation, V3, P79, DOI 10.1142/S021819679300007X
[10]   E-UNITARY INVERSE MONOIDS AND THE CAYLEY GRAPH OF A GROUP PRESENTATION [J].
MARGOLIS, SW ;
MEAKIN, JC .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 58 (01) :45-76