Clinical named-entity recognition: A short comparison

被引:0
作者
Lossio-Ventura, Juan Antonio [1 ]
Boussard, Sebastien [2 ]
Morzan, Juandiego [3 ]
Hernandez-Boussard, Tina [1 ]
机构
[1] Stanford Univ, Dept Med, Biomed Informat, Stanford, CA 94305 USA
[2] Boston Univ, Coll Engn, Boston, MA 02215 USA
[3] Univ Pacifico, Sch Engn, Lima, Peru
来源
2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2019年
基金
美国国家卫生研究院;
关键词
clinical research; electronic health records; named-entity recognition; natural language processing; ARCHITECTURE; INFORMATION; METAMAP;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The adoption of electronic health records has increased the volume of clinical data, which has opened an opportunity for healthcare research. There are several biomedical annotation systems that have been used to facilitate the analysis of clinical data. However, there is a lack of clinical annotation comparisons to select the most suitable tool for a specific clinical task. In this work, we used clinical notes from the MIMIC-III database and evaluated three annotation systems to identify four types of entities: (1) procedure, (2) disorder, (3) drug, and (4) anatomy. Our preliminary results demonstrate that BioPortal performs well when extracting disorder and drug. This can provide clinical researchers with real-clinical insights into patient's health patterns and it may allow to create a first version of an annotated dataset.
引用
收藏
页码:1548 / 1550
页数:3
相关论文
共 19 条
[1]   An overview of MetaMap: historical perspective and recent advances [J].
Aronson, Alan R. ;
Lang, Francois-Michel .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2010, 17 (03) :229-236
[2]   MetaMap Lite: an evaluation of a new Java']Java implementation of MetaMap [J].
Demner-Fushman, Dina ;
Rogers, Willie J. ;
Aronson, Alan R. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2017, 24 (04) :841-844
[3]  
Denny Joshua C, 2003, AMIA Annu Symp Proc, P195
[4]  
Doan S, 2014, METHODS MOL BIOL, V1168, P275, DOI 10.1007/978-1-4939-0847-9_16
[5]  
Evans R S, 2016, Yearb Med Inform, VSuppl 1, pS48, DOI 10.15265/IYS-2016-s006
[6]   A GENERAL NATURAL-LANGUAGE TEXT PROCESSOR FOR CLINICAL RADIOLOGY [J].
FRIEDMAN, C ;
ALDERSON, PO ;
AUSTIN, JHM ;
CIMINO, JJ ;
JOHNSON, SB .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 1994, 1 (02) :161-174
[7]   The MIMIC Code Repository: enabling reproducibility in critical care research [J].
Johnson, Alistair E. W. ;
Stone, David J. ;
Celi, Leo A. ;
Pollard, Tom J. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2018, 25 (01) :32-39
[8]   MIMIC-III, a freely accessible critical care database [J].
Johnson, Alistair E. W. ;
Pollard, Tom J. ;
Shen, Lu ;
Lehman, Li-wei H. ;
Feng, Mengling ;
Ghassemi, Mohammad ;
Moody, Benjamin ;
Szolovits, Peter ;
Celi, Leo Anthony ;
Mark, Roger G. .
SCIENTIFIC DATA, 2016, 3
[9]  
Jonquet Clement, 2009, Summit Transl Bioinform, V2009, P56
[10]   Natural language processing systems for capturing and standardizing unstructured clinical information: A systematic review [J].
Kreimeyer, Kory ;
Foster, Matthew ;
Pandey, Abhishek ;
Arya, Nina ;
Halford, Gwendolyn ;
Jones, Sandra F. ;
Forshee, Richard ;
Walderhaug, Mark ;
Botsis, Taxiarchis .
JOURNAL OF BIOMEDICAL INFORMATICS, 2017, 73 :14-29