Semantic Search-by-Examples for Scientific Topic Corpus Expansion in Digital Libraries

被引:9
作者
Al-Natsheh, Hussein T. [1 ,5 ]
Martinet, Lucie [1 ,2 ]
Muhlenbach, Fabrice [3 ]
Rico, Fabien [4 ]
Zighed, Djamel A. [1 ]
机构
[1] Univ Lyon Lyon 2, ERIC EA 3083, 5 Ave Pierre Mendes France, F-69676 Bron, France
[2] CESI EXIA LINEACT, 19 Ave Guy Collongue, F-69130 Ecully, France
[3] UJM St Etienne, Univ Lyon, Lab Hubert Curien, CNRS,UMR 5516, F-42023 St Etienne, France
[4] Univ Lyon Lyon 1, ERIC EA 3083, 5 Ave Pierre Mendes France, F-69676 Bron, France
[5] CNRS, Inst Sci Homme, FRE 3768, 14 Ave Berthelot, F-69363 Lyon 07, France
来源
2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017) | 2017年
关键词
D O I
10.1109/ICDMW.2017.103
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article we address the problem of expanding the set of papers that researchers encounter when conducting bibliographic research on their scientific work. Using classical search engines or recommender systems in digital libraries, some interesting and relevant articles could be missed if they do not contain the same search key-phrases that the researcher is aware of. We propose a novel model that is based on a supervised active learning over a semantic features transformation of all articles of a given digital library. Our model, named Semantic Search-byExamples (SSbE), shows better evaluation results over a similar purpose existing method, More-Like-This query, based on the feedback annotation of two domain experts in our experimented use-case. We also introduce a new semantic relatedness evaluation measure to avoid the need of human feedback annotation after the active learning process. The results also show higher diversity and overlapping with related scientific topics which we think can better foster transdisciplinary research.
引用
收藏
页码:747 / 756
页数:10
相关论文
共 35 条
[1]   LIS journals scientific impact and subject categorization: a comparison between Web of Science and Scopus [J].
Abrizah, A. ;
Zainab, A. N. ;
Kiran, K. ;
Raj, R. G. .
SCIENTOMETRICS, 2013, 94 (02) :721-740
[2]  
Al-Natsheh H. T., 2017, P 11 INT WORKSH SEM, P115, DOI DOI 10.18653/V1/S17-2013
[3]  
Alexander E, 2014, IEEE CONF VIS ANAL, P173, DOI 10.1109/VAST.2014.7042493
[4]  
[Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076
[5]  
[Anonymous], 2016, SEMEVAL 2016 10 INT
[6]  
[Anonymous], 1987, Scientific Discovery: Computational Explorations of the Creative Process
[7]   Research-paper recommender systems: a literature survey [J].
Beel, Joeran ;
Gipp, Bela ;
Langer, Stefan ;
Breitinger, Corinna .
INTERNATIONAL JOURNAL ON DIGITAL LIBRARIES, 2016, 17 (04) :305-338
[8]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[9]  
Bojanowski P., 2017, T ASSOC COMPUT LING, V5, P135, DOI [10.1162/tacl_a_00051, DOI 10.1162/TACL_A_00051, 10.1162/tacla00051, DOI 10.1162/TACLA00051]
[10]  
Chen L., 2017, J ENG SCI TECHNOLOGY, V10