A Reversibly Induced CRISPRi System Targeting Photosystem II in the Cyanobacterium Synechocystis sp. PCC 6803

被引:22
|
作者
Liu, Deng [1 ]
Johnson, Virginia M. [1 ]
Pakrasi, Himadri B. [1 ]
机构
[1] Washington Univ, Dept Biol, Campus Box 1137, St Louis, MO 63130 USA
来源
ACS SYNTHETIC BIOLOGY | 2020年 / 9卷 / 06期
关键词
cyanobacteria; CRISPR interference; photosystem II; GENE-EXPRESSION; PSB28; PROTEIN; INTERFERENCE; BIOGENESIS; REPRESSION; REPAIR; RNA; DNA;
D O I
10.1021/acssynbio.0c00106
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The cyanobacterium Synechorystis sp. PCC 6803 is used as a model organism to study photosynthesis, as it can utilize glucose as the sole carbon source to support its growth under heterotrophic conditions. CRISPR interference (CRISPRi) has been widely applied to repress the transcription of genes in a targeted manner in cyanobacteria. However, a robust and reversible induced CRISPRi system has not been explored in Synechocystis 6803 to knock down and recover the expression of a targeted gene. In this study, we built a tightly controlled chimeric promoter, PrhaBAD-RSW, in which a theophylline responsive riboswitch was integrated into a rhamnose-inducible promoter system. We applied this promoter to drive the expression of ddCpf1 (DNase-dead Cpf1 nuclease) in a CRISPRi system and chose the PSII reaction center gene psbD (D2 protein) to target for repression. psbD was specifically knocked down by over 95% of its native expression, leading to severely inhibited photosystem II activity and growth of Synechocystis 6803 under photoautotrophic conditions. Significantly, removal of the inducers rhamnose and theophylline reversed repression by CRISPRi. Expression of PsbD recovered following release of repression, coupled with increased photosystem II content and activity. This reversibly induced CRISPRi system in Synechocystis 6803 represents a new strategy for study of the biogenesis of photosynthetic complexes in cyanobacteria.
引用
收藏
页码:1441 / 1449
页数:9
相关论文
共 50 条
  • [21] Subcellular localization of the BtpA protein in the cyanobacterium Synechocystis sp. PCC 6803
    Zak, E
    Norling, B
    Andersson, B
    Pakrasi, HB
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 261 (01): : 311 - 316
  • [22] Insights into isoprene production using the cyanobacterium Synechocystis sp. PCC 6803
    Nadin Pade
    Sabrina Erdmann
    Heike Enke
    Frederik Dethloff
    Ulf Dühring
    Jens Georg
    Juliane Wambutt
    Joachim Kopka
    Wolfgang R. Hess
    Ralf Zimmermann
    Dan Kramer
    Martin Hagemann
    Biotechnology for Biofuels, 9
  • [23] On the Role and Production of Polyhydroxybutyrate (PHB) in the Cyanobacterium Synechocystis sp. PCC 6803
    Koch, Moritz
    Berendzen, Kenneth W.
    Forchhammer, Karl
    LIFE-BASEL, 2020, 10 (04):
  • [24] An Improved Natural Transformation Protocol for the Cyanobacterium Synechocystis sp. PCC 6803
    Pope, Matthew A.
    Hodge, Josh A.
    Nixon, Peter J.
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [25] β-Carotene influences the phycobilisome antenna of cyanobacterium Synechocystis sp. PCC 6803
    Sindhujaa Vajravel
    László Kovács
    Mihály Kis
    Ateeq Ur Rehman
    Imre Vass
    Zoltan Gombos
    Tunde N. Toth
    Photosynthesis Research, 2016, 130 : 403 - 415
  • [26] The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803
    Allison M.L. van de Meene
    Martin F. Hohmann-Marriott
    Wim F.J. Vermaas
    Robert W. Roberson
    Archives of Microbiology, 2006, 184 : 259 - 270
  • [27] β-Carotene influences the phycobilisome antenna of cyanobacterium Synechocystis sp PCC 6803
    Vajravel, Sindhujaa
    Kovacs, Laszlo
    Kis, Mihaly
    Rehman, Ateeq Ur
    Vass, Imre
    Gombos, Zoltan
    Toth, Tunde N.
    PHOTOSYNTHESIS RESEARCH, 2016, 130 (1-3) : 403 - 415
  • [28] Thylakoid Membrane Reduction Affects the Photosystem Stoichiometry in the Cyanobacterium Synechocystis sp PCC 6803
    Fuhrmann, Eva
    Gathmann, Sven
    Rupprecht, Eva
    Golecki, Jochen
    Schneider, Dirk
    PLANT PHYSIOLOGY, 2009, 149 (02) : 735 - 744
  • [29] Factors Controlling Floc Formation and Structure in the Cyanobacterium Synechocystis sp. Strain PCC 6803
    Conradi, Fabian D.
    Zhou, Rui-Qian
    Oeser, Sabrina
    Schuergers, Nils
    Wilde, Annegret
    Mullineaux, Conrad W.
    JOURNAL OF BACTERIOLOGY, 2019, 201 (19)
  • [30] Directed mutagenesis of the transmembrane domain of the PsbL subunit of photosystem II in Synechocystis sp. PCC 6803
    Hao Luo
    Julian J. Eaton-Rye
    Photosynthesis Research, 2008, 98 : 337 - 347