Grain boundary character distribution of CuNiSi and FeNi alloys processed by severe plastic deformation

被引:5
|
作者
Azzeddine, H. [1 ]
Baudin, T. [2 ]
Helbert, A. L. [2 ]
Brisset, F. [2 ]
Larbi, F. Hadj [1 ]
Tirsatine, K. [1 ]
Kawasaki, M. [3 ,4 ,5 ]
Bradai, D. [1 ]
Langdon, T. G. [4 ,5 ,6 ]
机构
[1] USTHB, Fac Phys, Dar El Beida, Alger, Algeria
[2] Univ Paris 11, ICMMO, CNRS, UMR 8182, F-91405 Orsay, France
[3] Hanyang Univ, Div Engn & Mat Sci, Seoul 133791, South Korea
[4] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
[5] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA
[6] Univ Southampton, Fac Engn & Environm, Mat Res Grp, Southampton SO17 1BJ, Hants, England
来源
17TH INTERNATIONAL CONFERENCE ON TEXTURES OF MATERIALS (ICOTOM 17) | 2015年 / 82卷
关键词
TEXTURE; MICROSTRUCTURE; EVOLUTION; TORSION; AL;
D O I
10.1088/1757-899X/82/1/012076
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work the Grain Boundary Character Distribution (GBCD) in general and the relative proportion of low-Sigma CSL (Coincidence Site Lattice) grain boundaries are determined through EBSD in Cu-2.5Ni-0.6Si (wt.%) and Fe-36Ni (wt.%) alloys after processing by high-pressure torsion, equal-channel angular pressing and accumulative roll bonding.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Mechanisms of grain refinement in aluminum alloys during severe plastic deformation
    Kaibyshev, R
    Mazurina, I
    RECRYSTALLIZATION AND GRAIN GROWTH, PTS 1 AND 2, 2004, 467-470 : 1251 - 1260
  • [22] Grain Boundary Character Distribution of TLM Titanium Alloy During Deformation
    Bai, X. F.
    Zhao, Y. Q.
    Jia, Z. Q.
    Zhang, Y. S.
    Li, B.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2016, 25 (06) : 2236 - 2244
  • [23] Grain Boundary Character Distribution of TLM Titanium Alloy During Deformation
    X. F. Bai
    Y. Q. Zhao
    Z. Q. Jia
    Y. S. Zhang
    B. Li
    Journal of Materials Engineering and Performance, 2016, 25 : 2236 - 2244
  • [24] Grain boundary contributions to deformation and solid-state flow in severe plastic deformation
    Esquivel, EV
    Murr, LE
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 409 (1-2): : 13 - 23
  • [25] Developing Superplasticity in High-Entropy Alloys Processed by Severe Plastic Deformation
    Shahmir, Hamed
    Kawasaki, Megumi
    Langdon, Terence G.
    THERMEC 2018: 10TH INTERNATIONAL CONFERENCE ON PROCESSING AND MANUFACTURING OF ADVANCED MATERIALS, 2018, 941 : 1059 - 1064
  • [26] Evolution of intergranular boundary structure during severe plastic deformation in aluminium alloys with different initial grain sizes
    Tsenev, NK
    Kuzeev, IR
    Selsky, BE
    INTERGRANULAR AND INTERPHASE BOUNDARIES IN MATERIALS, PT 2, 1996, 207- : 837 - 840
  • [27] Magnesium alloys processed by severe plastic deformation (SPD) for biomedical applications: An Overview
    Bryla, Krzysztof
    Horky, Jelena
    MATERIALS TRANSACTIONS, 2023, 64 (08) : 1709 - 1723
  • [28] KINETIC MODELLING OF FLOW STRESS OF METALS AND ALLOYS PROCESSED BY SEVERE PLASTIC DEFORMATION
    Chembarisova, R. G.
    Latypov, M. I.
    Alexandrov, I. V.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2012, 31 (02) : 100 - 108
  • [29] Diffusion and properties of bulk nanostructured metals and alloys processed by severe plastic deformation
    Kolobov, YR
    Grabovetskaya, GP
    Ivanov, KV
    Ivanov, MB
    DIFFUSION, SEGREGATION AND STRESSES IN MATERIALS, 2003, 216-2 : 253 - 261
  • [30] High-coercive state in alloys processed by severe plastic deformation technique
    Stolyarov, VV
    Gunderov, DV
    Popov, AG
    Gaviko, VS
    Valiev, RZ
    PHYSICS OF METALS AND METALLOGRAPHY, 2001, 91 : S273 - S277