Characterizations of Jordan mappings on some rings and algebras through zero products

被引:10
作者
Huang, Wenbo [1 ]
Li, Jiankui [1 ]
He, Jun [1 ]
机构
[1] East China Univ Sci & Technol, Dept Math, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Derivation; generalized matrix ring; Jordan derivation; multiplier; von Neumann algebra; C-ASTERISK-ALGEBRAS; DERIVATIONS; HOMOMORPHISMS; MAPS;
D O I
10.1080/03081087.2017.1298081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U = A B be a generalized matrix ring, where A and B are 2-torsion free. We prove that if phi : U -> U is an additive mapping such that phi( U) o V + U o f(V) = 0 whenever UV = VU = 0, then phi = delta + eta, where delta is a Jordan derivation and eta is a multiplier. As its applications, we prove that the similar conclusion remains valid on full matrix algebras, unital prime rings with a nontrivial idempotent, unital standard operator algebras, CDCSL algebras and von Neumann algebras.
引用
收藏
页码:334 / 346
页数:13
相关论文
共 25 条
[1]  
Alaminos J, 2007, P ROY SOC EDINB A, V137, P1
[2]   CHARACTERIZING JORDAN MAPS ON C*-ALGEBRAS THROUGH ZERO PRODUCTS [J].
Alaminos, J. ;
Bresar, J. M. ;
Extremera, J. ;
Villena, A. R. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 :543-555
[3]   Maps preserving zero products [J].
Alaminos, J. ;
Bresar, M. ;
Extremera, J. ;
Villena, A. R. .
STUDIA MATHEMATICA, 2009, 193 (02) :131-159
[4]   Jordan derivations of full matrix algebras [J].
Alizadeh, R. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) :574-578
[5]   Zero Jordan product determined algebras [J].
An, Guangyu ;
Li, Jiankui ;
He, Jun .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 475 :90-93
[6]   CHARACTERIZATIONS OF LINEAR MAPPINGS THROUGH ZERO PRODUCTS OR ZERO JORDAN PRODUCTS [J].
An, Guanyu ;
Li, Jiankui .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2016, 31 :408-424
[7]   Characterizations of Jordan derivations on rings with idempotent [J].
An, Runling ;
Hou, Jinchuan .
LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (06) :753-763
[8]   A survey on local and 2-local derivations on C*- and von Neuman algebras [J].
Ayupov, Shavkat ;
Kudaybergenov, Karimbergen ;
Peralta, Antonio M. .
TOPICS IN FUNCTIONAL ANALYSIS AND ALGEBRA, 2016, 672 :73-126
[9]   LOCAL TRIPLE DERIVATIONS ON C*-ALGEBRAS [J].
Burgos, Maria ;
Fernandez-Polo, Francisco J. ;
Garces, Jorge J. ;
Peralta, Antonio M. .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (03) :1276-1286
[10]   On mappings preserving zero products [J].
Burgos, Maria ;
Sanchez-Ortega, Juana .
LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (03) :323-335