Mitochondrial Respiratory Capacity Is a Critical Regulator of CD8+ T Cell Memory Development

被引:1156
|
作者
van der Windt, Gerritje J. W. [1 ]
Everts, Bart [1 ]
Chang, Chih-Hao [1 ]
Curtis, Jonathan D. [1 ]
Freitas, Tori C. [1 ]
Amiel, Eyal [1 ]
Pearce, Edward J. [1 ]
Pearce, Erika L. [1 ]
机构
[1] Trudeau Inst, Saranac Lake, NY 12983 USA
关键词
OXIDATIVE-PHOSPHORYLATION; SIGNAL-TRANSDUCTION; AEROBIC GLYCOLYSIS; CUTTING EDGE; COMPLEX-I; IL-15; METABOLISM; PROLIFERATION; HOMEOSTASIS; EXPRESSION;
D O I
10.1016/j.immuni.2011.12.007
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
CD8(+) T cells undergo major metabolic changes upon activation, but how metabolism influences the establishment of long-lived memory T cells after infection remains a key question. We have shown here that CD8(+) memory T cells, but not CD8(+) T effector (Teff) cells, possessed substantial mitochondrial spare respiratory capacity (SRC). SRC is the extra capacity available in cells to produce energy in response to increased stress or work and as such is associated with cellular survival. We found that interleukin-15 (IL-15), a cytokine critical for CD8(+) memory T cells, regulated SRC and oxidative metabolism by promoting mitochondrial biogenesis and expression of carnitine palmitoyl transferase (CPT1a), a metabolic enzyme that controls the rate-limiting step to mitochondria, fatty acid oxidation (FAO). These results show how cytokines control the bioenergetic stability of memory T cells after infection by regulating mitochondrial metabolism.
引用
收藏
页码:68 / 78
页数:11
相关论文
共 50 条
  • [31] Epitope Density Influences CD8+ Memory T Cell Differentiation
    Leignadier, Julie
    Labrecque, Nathalie
    PLOS ONE, 2010, 5 (10):
  • [32] Transcriptional control of effector and memory CD8+ T cell differentiation
    Kaech, Susan M.
    Cui, Weiguo
    NATURE REVIEWS IMMUNOLOGY, 2012, 12 (11) : 749 - 761
  • [33] The lifestyle of memory CD8+ T cells
    Alp, Oezen Sercan
    Radbruch, Andreas
    NATURE REVIEWS IMMUNOLOGY, 2016, 16 (04)
  • [34] Transcriptional insights into the CD8+ T cell response to infection and memory T cell formation
    Best, J. Adam
    Blair, David A.
    Knell, Jamie
    Yang, Edward
    Mayya, Viveka
    Doedens, Andrew
    Dustin, Michael L.
    Goldrath, Ananda W.
    NATURE IMMUNOLOGY, 2013, 14 (04) : 404 - 412
  • [35] Turnover of memory-phenotype CD8+ T cells
    Sprent, J
    MICROBES AND INFECTION, 2003, 5 (03) : 227 - 231
  • [36] Effector Function-Deficient Memory CD8+ T Cells Clonally Expand in the Liver and Give Rise to Peripheral Memory CD8+ T Cells
    Su, Yu-Chia
    Lee, Chen-Cheng
    Kung, John T.
    JOURNAL OF IMMUNOLOGY, 2010, 185 (12) : 7498 - 7506
  • [37] The Respiratory Environment Diverts the Development of Antiviral Memory CD8 T Cells
    Shane, Hillary L.
    Reagin, Katie L.
    Klonowski, Kimberly D.
    JOURNAL OF IMMUNOLOGY, 2018, 200 (11) : 3752 - 3761
  • [38] T-cell receptor signals direct the composition and function of the memory CD8+ T-cell pool
    Smith-Garvin, Jennifer E.
    Burns, Jeremy C.
    Gohil, Mercy
    Zou, Tao
    Kim, Jiyeon S.
    Maltzman, Jonathan S.
    Wherry, E. John
    Koretzky, Gary A.
    Jordan, Martha S.
    BLOOD, 2010, 116 (25) : 5548 - 5559
  • [39] SLAMF6 as a Regulator of Exhausted CD8+ T Cells in Cancer
    Yigit, Burcu
    Wang, Ninghai
    Ten Hacken, Elisa
    Chen, Shih-Shih
    Bhan, Atul K.
    Suarez-Fueyo, Abel
    Katsuyama, Eri
    Tsokos, George C.
    Chiorazzi, Nicholas
    Wu, Catherine J.
    Burger, Jan A.
    Herzog, Roland W.
    Engel, Pablo
    Terhorst, Cox
    CANCER IMMUNOLOGY RESEARCH, 2019, 7 (09) : 1485 - 1496
  • [40] The tyrosine kinase Itk suppresses CD8+ memory T cell development in response to bacterial infection
    Huang, Fei
    Huang, Weishan
    Briggs, Jessica
    Chew, Tina
    Bai, Yuting
    Deol, Simrita
    August, Avery
    SCIENTIFIC REPORTS, 2015, 5