Mitochondrial Respiratory Capacity Is a Critical Regulator of CD8+ T Cell Memory Development

被引:1156
|
作者
van der Windt, Gerritje J. W. [1 ]
Everts, Bart [1 ]
Chang, Chih-Hao [1 ]
Curtis, Jonathan D. [1 ]
Freitas, Tori C. [1 ]
Amiel, Eyal [1 ]
Pearce, Edward J. [1 ]
Pearce, Erika L. [1 ]
机构
[1] Trudeau Inst, Saranac Lake, NY 12983 USA
关键词
OXIDATIVE-PHOSPHORYLATION; SIGNAL-TRANSDUCTION; AEROBIC GLYCOLYSIS; CUTTING EDGE; COMPLEX-I; IL-15; METABOLISM; PROLIFERATION; HOMEOSTASIS; EXPRESSION;
D O I
10.1016/j.immuni.2011.12.007
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
CD8(+) T cells undergo major metabolic changes upon activation, but how metabolism influences the establishment of long-lived memory T cells after infection remains a key question. We have shown here that CD8(+) memory T cells, but not CD8(+) T effector (Teff) cells, possessed substantial mitochondrial spare respiratory capacity (SRC). SRC is the extra capacity available in cells to produce energy in response to increased stress or work and as such is associated with cellular survival. We found that interleukin-15 (IL-15), a cytokine critical for CD8(+) memory T cells, regulated SRC and oxidative metabolism by promoting mitochondrial biogenesis and expression of carnitine palmitoyl transferase (CPT1a), a metabolic enzyme that controls the rate-limiting step to mitochondria, fatty acid oxidation (FAO). These results show how cytokines control the bioenergetic stability of memory T cells after infection by regulating mitochondrial metabolism.
引用
收藏
页码:68 / 78
页数:11
相关论文
共 50 条
  • [1] Akt signaling is critical for memory CD8+ T-cell development and tumor immune surveillance
    Rogel, Anne
    Willoughby, Jane E.
    Buchan, Sarah L.
    Leonard, Henry J.
    Thirdborough, Stephen M.
    Al-Shamkhani, Aymen
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (07) : E1178 - E1187
  • [2] Ketogenesis-generated β-hydroxybutyrate is an epigenetic regulator of CD8+ T-cell memory development
    Zhang, Huafeng
    Tang, Ke
    Ma, Jingwei
    Zhou, Li
    Liu, Jincheng
    Zeng, Liping
    Zhu, Liyan
    Xu, Pingwei
    Chen, Jie
    Wei, Keke
    Liang, Xiaoyu
    Lv, Jiadi
    Xie, Jing
    Liu, Yuying
    Wan, Yonghong
    Huang, Bo
    NATURE CELL BIOLOGY, 2020, 22 (01) : 18 - +
  • [3] Mitochondrial metabolic flexibility is critical for CD8+ T cell antitumor immunity
    Chen, Chao
    Zheng, Hong
    Horwitz, Edwin M.
    Ando, Satomi
    Araki, Koichi
    Zhao, Peng
    Li, Zhiguo
    Ford, Mandy L.
    Ahmed, Rafi
    Qu, Cheng-Kui
    SCIENCE ADVANCES, 2023, 9 (49)
  • [4] Memory CD8+ T cell differentiation
    Obar, Joshua J.
    Lefrancois, Leo
    YEAR IN IMMUNOLOGY 2, 2010, 1183 : 251 - 266
  • [5] The multifaceted role of CD4+ T cells in CD8+ T cell memory
    Laidlaw, Brian J.
    Craft, Joseph E.
    Kaech, Susan M.
    NATURE REVIEWS IMMUNOLOGY, 2016, 16 (02) : 102 - 111
  • [6] Memory CD8+ T cell responses to cancer
    Han, Jichang
    Khatwani, Nikhil
    Searles, Tyler G.
    Turk, Mary Jo
    Angeles, Christina, V
    SEMINARS IN IMMUNOLOGY, 2020, 49
  • [7] Transcriptional regulation of effector and memory CD8+ T cell fates
    Thaventhiran, James E. D.
    Fearon, Douglas T.
    Gattinoni, Luca
    CURRENT OPINION IN IMMUNOLOGY, 2013, 25 (03) : 321 - 328
  • [8] AMPK: A metabolic switch for CD8+ T-cell memory
    Araki, Koichi
    Ahmed, Rafi
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2013, 43 (04) : 878 - 881
  • [9] CD8+ T cell exhaustion
    Kurachi, Makoto
    SEMINARS IN IMMUNOPATHOLOGY, 2019, 41 (03) : 327 - 337
  • [10] The memory of a killer T cell: models of CD8+ T cell differentiation
    Gerritsen, Bram
    Pandit, Aridaman
    IMMUNOLOGY AND CELL BIOLOGY, 2016, 94 (03) : 236 - 241