An ultra-broadband terahertz absorber at high terahertz frequency

被引:4
|
作者
Li, Tong [1 ]
Chen, Hang [1 ]
Zhang, Fengqiang [3 ]
Zhang, Jia [1 ,2 ]
Wang, Zhenlong [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Mechatron Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Key Lab Microsyst & Microstruct Mfg, Minist Educ, Harbin 150080, Peoples R China
[3] Harbin Inst Technol, Sch Mechatron Engn & Automat, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 中国博士后科学基金;
关键词
Terahertz; Broadband absorber; Metamaterials; METAMATERIAL; DESIGN;
D O I
10.1007/s11082-022-04133-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Broadband absorber at high terahertz frequency is highly required for applications in imaging, detecting, electromagnetic stealth. Although intensive investigations of the broadband absorber have been taken, the challenges still exist both in design and fabrication of an ultra-broadband absorber at high frequency. Herein, a three-layered structure metamaterial has been designed to realize an ultra-broadband terahertz absorber covering 3.94-9.98 THz (6.04 THZ) at the absorption above 80%, and the absorption bandwidth can be increased to 7.64THz (2.34-9.98 THz) by rotating the absorber. Upon on the simulations, the proposed absorber exhibits insensitive to the TM and TE polarization, it means the absorption effect is almost consistent in different polarization modes, the proposed absorber is significant in the practical application. Nevertheless, the absorption bandwidth reduces a little bit to 5.05 THz (absorption > 60%) as beta increases to 45 degrees.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] An ultra-broadband terahertz absorber at high terahertz frequency
    Tong Li
    Hang Chen
    Fengqiang Zhang
    Jia Zhang
    Zhenlong Wang
    Optical and Quantum Electronics, 2022, 54
  • [2] Terahertz absorber with switchable functionality from ultra-broadband to broadband
    Wu, Guozheng
    Li, Chao
    Wang, Dong
    Chen, Wenya
    Gao, Song
    Guo, Haijun
    Zhang, Chunwei
    Guo, Shijing
    DIAMOND AND RELATED MATERIALS, 2023, 139
  • [3] Ultra-broadband terahertz absorber based on graphene ribbons
    Chaharmahali, Iman
    Biabanifard, Sadegh
    OPTIK, 2018, 172 : 1026 - 1033
  • [4] Numerical Study of an Ultra-Broadband All-Silicon Terahertz Absorber
    Wang, Jinfeng
    Lang, Tingting
    Shen, Tingting
    Shen, Changyu
    Hong, Zhi
    Lu, Congcong
    APPLIED SCIENCES-BASEL, 2020, 10 (02):
  • [5] Structural Optimization and Performance Analysis of a Tunable Ultra-Broadband Terahertz Absorber
    Hu, KeXiang
    Xu, SongTong
    Chen, Le
    Wang, PeiHua Yang
    Wen, ZhiHan
    Wang, QingKang
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2022, 219 (12):
  • [6] Polarization insensitive flexible ultra-broadband terahertz metamaterial absorber
    Song, Zihang
    Ma, Xiaoya
    Jiang, Wenying
    Zhang, Longhui
    Jiang, Mingzhu
    Hu, Fangrong
    Zeng, Lizhen
    APPLIED OPTICS, 2023, 62 (33) : 8905 - 8910
  • [7] A tunable ultra-broadband terahertz absorber based on two layers of graphene ribbons
    Daraei, Omid Mohsen
    Goudarzi, Kiyanoush
    Bemani, Mohammad
    OPTICS AND LASER TECHNOLOGY, 2020, 122 (122):
  • [8] A switchable terahertz metamaterial absorber between ultra-broadband and dual bands
    Ren, Zhi
    Wang, Wanqing
    Zhao, Yinghui
    Chang, Siqi
    Ren, Guanhua
    Li, Songtao
    Wang, Ruoxing
    FRONTIERS IN PHYSICS, 2023, 11
  • [9] Ultra-broadband terahertz metamaterial absorber using a simple design method
    Ri, Kwang-Jin
    Ri, Chung-Ho
    Ri, Song-Yun
    OPTICS COMMUNICATIONS, 2022, 515
  • [10] Ultra-broadband terahertz absorber based on double truncated pyramid structure
    Feng, Guang
    Chen, Zhihui
    Wang, Xiaowei
    Liu, Xiao
    Sun, Fei
    Yang, Yibiao
    MATERIALS TODAY COMMUNICATIONS, 2022, 31