A new parameter free partially penalized immersed finite element and the optimal convergence analysis

被引:19
作者
Ji, Haifeng [1 ]
Wang, Feng [2 ]
Chen, Jinru [2 ,3 ]
Li, Zhilin [4 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[3] Jiangsu Second Normal Univ, Sch Math & Informat Technol, Nanjing 211200, Peoples R China
[4] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
基金
中国国家自然科学基金;
关键词
65N15; 65N30; 35R05; INTERFACE PROBLEMS; ERROR ESTIMATION; SPACES; DOMAINS;
D O I
10.1007/s00211-022-01276-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new parameter free partially penalized immersed finite element method and convergence analysis for solving second order elliptic interface problems. A lifting operator is introduced on interface edges to ensure the coercivity of the method without requiring an ad-hoc stabilization parameter. The optimal approximation capabilities of the immersed finite element space is proved via a novel new approach that is much simpler than that in the literature. A new trace inequality which is necessary to prove the optimal convergence of immersed finite element methods is established on interface elements. Optimal error estimates are derived rigorously with the constant independent of the interface location relative to the mesh. The new method and analysis have also been extended to variable coefficients and three-dimensional problems. Numerical examples are also provided to confirm the theoretical analysis and efficiency of the new method.
引用
收藏
页码:1035 / 1086
页数:52
相关论文
共 51 条
[1]  
Adjerid S., 2020, ARXIV PREPRINT ARXIV
[2]   Higher degree immersed finite element spaces constructed according to the actual interface [J].
Adjerid, Slimane ;
Ben-Romdhane, Mohamed ;
Lin, Tao .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) :1868-1881
[3]  
Adjerid S, 2017, INT J NUMER ANAL MOD, V14, P604
[4]  
[Anonymous], 2006, Siam
[5]   FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS [J].
BABUSKA, I .
COMPUTING, 1970, 5 (03) :207-&
[6]  
BRAMBLE JH, 1994, MATH COMPUT, V63, P1, DOI 10.1090/S0025-5718-1994-1242055-6
[7]   A finite element method for interface problems in domains with smooth boundaries and interfaces [J].
Bramble, JH ;
King, JT .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (02) :109-138
[8]  
Brenner SC., 2008, The Mathematical Theory of Finite Element Methods, V15, DOI DOI 10.1007/978-0-387-75934-0
[9]   Robust flux error estimation of an unfitted Nitsche method for high-contrast interface problems [J].
Burman, Erik ;
Guzman, Johnny ;
Sanchez, Manuel A. ;
Sarkis, Marcus .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (02) :646-668
[10]   Finite element methods and their convergence for elliptic and parabolic interface problems [J].
Chen, ZM ;
Zou, J .
NUMERISCHE MATHEMATIK, 1998, 79 (02) :175-202