NONLINEAR ORBITAL STABILITY FOR PLANAR VORTEX PATCHES

被引:13
作者
Cao, Daomin [1 ,2 ]
Wan, Jie [3 ,4 ]
Wang, Guodong [3 ,4 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510405, Guangdong, Peoples R China
[2] Chinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
STEADY; REARRANGEMENTS; CONFIGURATIONS; FLOW;
D O I
10.1090/proc/14077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove nonlinear orbital stability for steady vortex patches that maximize the kinetic energy among isovortical rearrangements in a planar bounded domain. As a result, nonlinear stability for an isolated vortex patch is proved. The proof is based on conservation of energy and vorticity, which is an analogue of the classical Liapunov function method.
引用
收藏
页码:775 / 784
页数:10
相关论文
共 20 条
[1]  
[Anonymous], 1994, APPL MATH SCI
[2]  
Arnold V. I., 1978, MATH METHODS CLASSIC, V60
[3]  
Arnold V.I., 1969, Am. Math. Soc. Transl., Ser., V79, P267
[4]   Nonlinear Stability for Steady Vortex Pairs [J].
Burton, Geoffrey R. ;
Nussenzveig Lopes, Helena J. ;
Lopes Filho, Milton C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 324 (02) :445-463
[6]   Global nonlinear stability for steady ideal fluid flow in bounded planar domains [J].
Burton, GR .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 176 (02) :149-163
[7]   VARIATIONAL-PROBLEMS ON CLASSES OF REARRANGEMENTS AND MULTIPLE CONFIGURATIONS FOR STEADY VORTICES [J].
BURTON, GR .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1989, 6 (04) :295-319
[8]   MAXIMIZATION AND MINIMIZATION ON CLASSES OF REARRANGEMENTS [J].
BURTON, GR ;
MCLEOD, JB .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1991, 119 :287-300
[9]  
Cao D., ARXIV170610070
[10]  
Cao D., ARXIV170309863