Bresse system;
Indefinite damping;
Exponential stability;
ENERGY DECAY-RATE;
WAVE-EQUATIONS;
STABILITY;
D O I:
10.1016/j.jmaa.2011.08.072
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider the Bresse system in a bounded domain (0, L) subset of R(1). The system has an indefinite damping mechanism, i.e. with a damping function a = a(x) possibly changing sign, presented only in the equation for the rotation angle. We shall prove that the system is still exponentially stable under the same conditions as in the positive constant damping case, and provided (a) over bar = 1/L integral(L)(0) a(x)dx > 0 and parallel to a - (a) over bar parallel to(2)(L) < epsilon, epsilon for e small enough. In the arguments, we shall also give a new proof of exponential stability for the constant case a = <(a)over bar>. (C) 2011 Elsevier Inc. All rights reserved.
机构:
Natl Lab Sci Computat, BR-25651070 Rio De Janeiro, Brazil
Univ Fed Rio de Janeiro, Dept Math, Rio De Janeiro, BrazilUniv Estadual Londrina, Dept Math, BR-86051990 Londrina, Parana, Brazil
机构:
Natl Lab Sci Computat, Dept Res & Dev, BR-25651070 Petropolis, RJ, Brazil
Univ Fed Rio de Janeiro, Rio De Janeiro, BrazilUniv Konstanz, Dept Math & Stat, D-78457 Constance, Germany
Munoz Rivera, Jaime E.
Racke, Reinhard
论文数: 0引用数: 0
h-index: 0
机构:
Univ Konstanz, Dept Math & Stat, D-78457 Constance, GermanyUniv Konstanz, Dept Math & Stat, D-78457 Constance, Germany
机构:
Natl Lab Sci Computat, BR-25651070 Rio De Janeiro, Brazil
Univ Fed Rio de Janeiro, Dept Math, Rio De Janeiro, BrazilUniv Estadual Londrina, Dept Math, BR-86051990 Londrina, Parana, Brazil
机构:
Natl Lab Sci Computat, Dept Res & Dev, BR-25651070 Petropolis, RJ, Brazil
Univ Fed Rio de Janeiro, Rio De Janeiro, BrazilUniv Konstanz, Dept Math & Stat, D-78457 Constance, Germany
Munoz Rivera, Jaime E.
Racke, Reinhard
论文数: 0引用数: 0
h-index: 0
机构:
Univ Konstanz, Dept Math & Stat, D-78457 Constance, GermanyUniv Konstanz, Dept Math & Stat, D-78457 Constance, Germany