Molecular Field Analysis Using Computational-Screening Data in Asymmetric N-Heterocyclic Carbene-Copper Catalysis toward Data-Driven In Silico Catalyst Optimization

被引:11
作者
Mukai, Masakiyo [1 ]
Nagao, Kazunori [1 ]
Yamaguchi, Shigeru [2 ]
Ohmiya, Hirohisa [1 ,3 ]
机构
[1] Kanazawa Univ, Grad Sch Med Sci, Div Pharmaceut Sci, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan
[2] RIKEN, Ctr Sustainable Resource Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[3] JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
关键词
Computational molecular design; Molecular field analysis/3D-QSSR; Asymmetric catalysis; DESIGN; ALDEHYDES; MECHANISM; MODELS; STEREOSELECTIVITY; PROPARGYLATIONS; REGULARIZATION; SELECTION; DFT;
D O I
10.1246/bcsj.20210349
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A molecular-field-based regression analysis using computational screening data for N-heterocyclic carbene (NHC)-Cu-catalyzed asymmetric carbonyl additions of a silylboronate to aldehydes is reported. A computational screening was performed to collect enantioselectivity data (Delta Delta G(double dagger): energy differences between the transition states leading to each enantiomer) via transition-state (TS) calculations using density functional theory (DFT) methods. A molecular field analysis (MFA) was carried out using the obtained calculated Delta Delta G(double dagger) values and TS structures (30 samples in total). Important structural information for enantioselectivity extracted by the MFA was visualized on the TS structures, which provided insight into an asymmetric induction mechanism. Based on the obtained information, chiral NHC ligands were designed, which showed improved enantioselectivity in these carbonyl additions (designed ligands: up to 96% ee, initial training samples: up to 73% ee).
引用
收藏
页码:271 / 277
页数:7
相关论文
共 42 条
[1]   Data-driven catalyst optimization for stereodivergent asymmetric synthesis by iridium/boron hybrid catalysis [J].
Chen, Hongyu ;
Yamaguchi, Shigeru ;
Morita, Yuya ;
Nakao, Hiroyasu ;
Zhai, Xiangning ;
Shimizu, Yohei ;
Mitsunuma, Harunobu ;
Kanai, Motomu .
CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (12)
[2]   Quantum Mechanical Investigations of Organocatalysis: Mechanisms, Reactivities, and Selectivities [J].
Cheong, Paul Ha-Yeon ;
Legault, Claude Y. ;
Um, Joann M. ;
Celebi-Oelcuem, Nihan ;
Houk, K. N. .
CHEMICAL REVIEWS, 2011, 111 (08) :5042-5137
[3]   An Evolutionary Algorithm for de Novo Optimization of Functional Transition Metal Compounds [J].
Chu, Yunhan ;
Heyndrickx, Wouter ;
Occhipinti, Giovanni ;
Jensen, Vidar R. ;
Alsberg, Bjorn K. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (21) :8885-8895
[4]   Copper-Catalyzed Addition of Nucleophilic Silicon to Aldehydes [J].
Cirriez, Virginie ;
Rasson, Corentin ;
Hermant, Thomas ;
Petrignet, Julien ;
Alvarez, Jesus Diaz ;
Robeyns, Koen ;
Riant, Olivier .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (06) :1785-1788
[5]   McQuade's Six-Membered NHC-Copper(I) Complexes for Catalytic Asymmetric Silyl Transfer [J].
Delvos, Lukas B. ;
Hensel, Alexander ;
Oestreich, Martin .
SYNTHESIS-STUTTGART, 2014, 46 (21) :2957-2964
[6]   Design of Organocatalysts for Asymmetric Propargylations through Computational Screening [J].
Doney, Analise C. ;
Rooks, Benjamin J. ;
Lu, Tongxiang ;
Wheeler, Steven E. .
ACS CATALYSIS, 2016, 6 (11) :7948-7955
[7]   Automated in Silico Design of Homogeneous Catalysts [J].
Foscato, Marco ;
Jensen, Vidar R. .
ACS CATALYSIS, 2020, 10 (03) :2354-2377
[8]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22
[9]   Understanding the Roles of the "Two QSARs" [J].
Fujita, Toshio ;
Winkler, David A. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2016, 56 (02) :269-274
[10]   Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts [J].
Gallarati, Simone ;
Fabregat, Raimon ;
Laplaza, Ruben ;
Bhattacharjee, Sinjini ;
Wodrich, Matthew D. ;
Corminboeuf, Clemence .
CHEMICAL SCIENCE, 2021, 12 (20) :6879-6889