A practical guide to interpreting and generating bottom-up proteomics data visualizations

被引:27
作者
Schessner, Julia Patricia [1 ]
Voytik, Eugenia [1 ]
Bludau, Isabell [1 ]
机构
[1] Max Planck Inst Biochem, Dept Prote & Signal Transduct, E03,Klopferspitz 18, D-82152 Planegg, Germany
基金
瑞士国家科学基金会;
关键词
bottom-up proteomics; data visualization; open science; science communication; DATA-INDEPENDENT ACQUISITION; LC-MS; PEPTIDE IDENTIFICATION; MASS; MOBILITY; !text type='PYTHON']PYTHON[!/text; QUANTIFICATION; FRAGMENTATION; STRATEGY; COMPLEX;
D O I
10.1002/pmic.202100103
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Mass-spectrometry based bottom-up proteomics is the main method to analyze proteomes comprehensively and the rapid evolution of instrumentation and data analysis has made the technology widely available. Data visualization is an integral part of the analysis process and it is crucial for the communication of results. This is a major challenge due to the immense complexity of MS data. In this review, we provide an overview of commonly used visualizations, starting with raw data of traditional and novel MS technologies, then basic peptide and protein level analyses, and finally visualization of highly complex datasets and networks. We specifically provide guidance on how to critically interpret and discuss the multitude of different proteomics data visualizations. Furthermore, we highlight Python-based libraries and other open science tools that can be applied for independent and transparent generation of customized visualizations. To further encourage programmatic data visualization, we provide the Python code used to generate all data figures in this review on GitHub ().
引用
收藏
页数:18
相关论文
共 118 条
[51]   Ontological analysis of gene expression data: current tools, limitations, and open problems [J].
Khatri, P ;
Draghici, S .
BIOINFORMATICS, 2005, 21 (18) :3587-3595
[52]   Characterization of Native Protein Complexes and Protein Isoform Variation Using Size-fractionation-based Quantitative Proteomics [J].
Kirkwood, Kathryn J. ;
Ahmad, Yasmeen ;
Larance, Mark ;
Lamond, Angus I. .
MOLECULAR & CELLULAR PROTEOMICS, 2013, 12 (12) :3851-3873
[53]   pymzML v2.0: introducing a highly compressed and seekable gzip format [J].
Koesters, M. ;
Leufken, J. ;
Schulze, S. ;
Sugimoto, K. ;
Klein, J. ;
Zahedi, R. P. ;
Hippler, M. ;
Leidel, S. A. ;
Fufezan, C. .
BIOINFORMATICS, 2018, 34 (14) :2513-2514
[54]  
Kong AT, 2017, NAT METHODS, V14, P513, DOI [10.1038/NMETH.4256, 10.1038/nmeth.4256]
[55]   A Guide to Conquer the Biological Network Era Using Graph Theory [J].
Koutrouli, Mikaela ;
Karatzas, Evangelos ;
Paez-Espino, David ;
Pavlopoulos, Georgios A. .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
[56]   POINTS OF SIGNIFICANCE Comparing samples-part II [J].
Krzywinski, Martin ;
Altman, Naomi .
NATURE METHODS, 2014, 11 (04) :355-356
[57]   POINTS OF SIGNIFICANCE Comparing samples-part I [J].
Krzywinski, Martin ;
Altman, Naomi .
NATURE METHODS, 2014, 11 (03) :215-216
[58]   POINTS OF SIGNIFICANCE Power and sample size [J].
Krzywinski, Martin ;
Altman, Naomi .
NATURE METHODS, 2013, 10 (12) :1139-1140
[59]   Pyteomics 4.0: Five Years of Development of a Python']Python Proteomics Framework [J].
Levitsky, Lev I. ;
Klein, Joshua A. ;
Ivanov, Mark V. ;
Gorshkov, Mikhail V. .
JOURNAL OF PROTEOME RESEARCH, 2019, 18 (02) :709-714
[60]   Quantitative proteome comparison of human hearts with those of model organisms [J].
Linscheid, Nora ;
Santos, Alberto ;
Poulsen, Pi Camilla ;
Mills, Robert W. ;
Calloe, Kirstine ;
Leurs, Ulrike ;
Ye, Johan Z. ;
Stolte, Christian ;
Thomsen, Morten B. ;
Bentzen, Bo H. ;
Lundegaard, Pia R. ;
Olesen, Morten S. ;
Jensen, Lars J. ;
Olsen, Jesper, V ;
Lundby, Alicia .
PLOS BIOLOGY, 2021, 19 (04)