Structure of the integrin α2β1-binding collagen peptide

被引:116
作者
Emsley, J [1 ]
Knight, CG
Farndale, RW
Barnes, MJ
机构
[1] Univ Leicester, Dept Biochem, Leicester LE1 7RH, Leics, England
[2] Univ Cambridge, Dept Biochem, Cambridge CB2 1QW, England
基金
英国惠康基金;
关键词
collagen; triple helix; integrin binding;
D O I
10.1016/j.jmb.2003.11.030
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have determined the 1.8 Angstrom crystal structure of a triple helical integrin-binding collagen peptide (IBP) with sequence (Gly-Pro-Hyp)(2)-Gly-Phe-Hyp-Gly-Glu-Arg-(Gly-Pro-Hyp)(3). The central GFOGER hexapeptide is recognised specifically by the integrins alpha2beta1, alpha1beta1, alpha10beta1 and alpha11beta1. These integrin/collagen interactions are implicated in a number of key physiological processes including cell adhesion, cell growth and differentiation, and pathological states such as thrombosis and tumour metastasis. Comparison of the IBP structure with the previously determined structure of an identical collagen peptide in complex with the integrin alpha2-I domain (IBPc) allows the first detailed examination of collagen in a bound and an unbound state. The IBP structure shows a direct and a water-mediated electrostatic interaction between Glu and Arg side-chains from adjacent strands, but no intra-strand interactions. The interactions between IBP Glu and Arg side-chains are disrupted upon integrin binding. A comparison of IBP and IBPc main-chain conformation reveals the flexible nature of the triple helix backbone in the imino-poor GFOGER region. This flexibility could be important to the integrin-collagen interaction and provides a possible explanation for the unique orientation of the three GFOGER strands observed in the integrin-IBPc complex crystal structure. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1019 / 1028
页数:10
相关论文
共 28 条
[1]   CRYSTAL-STRUCTURE AND MOLECULAR-STRUCTURE OF A COLLAGEN-LIKE PEPTIDE AT 1.9-ANGSTROM RESOLUTION [J].
BELLA, J ;
EATON, M ;
BRODSKY, B ;
BERMAN, HM .
SCIENCE, 1994, 266 (5182) :75-81
[2]   The collagen triple-helix structure [J].
Brodsky, B ;
Ramshaw, JAM .
MATRIX BIOLOGY, 1997, 15 (8-9) :545-554
[3]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[4]   THE COLLAGEN FIBRIL - A MODEL SYSTEM FOR STUDYING THE STAINING AND FIXATION OF A PROTEIN [J].
CHAPMAN, JA ;
TZAPHLIDOU, M ;
MEEK, KM ;
KADLER, KE .
ELECTRON MICROSCOPY REVIEWS, 1990, 3 (01) :143-182
[5]   Integrin and ECM functions - roles in vertebrate development [J].
De Arcangelis, A ;
Georges-Labouesse, E .
TRENDS IN GENETICS, 2000, 16 (09) :389-395
[6]   Structural basis of collagen recognition by integrin α2β1 [J].
Emsley, J ;
Knight, CG ;
Farndale, RW ;
Barnes, MJ ;
Liddington, RC .
CELL, 2000, 101 (01) :47-56
[8]   Integrin structure [J].
Humphries, MJ .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2000, 28 :311-340
[9]   INTEGRINS - VERSATILITY, MODULATION, AND SIGNALING IN CELL-ADHESION [J].
HYNES, RO .
CELL, 1992, 69 (01) :11-25
[10]  
Kadler KE, 1996, BIOCHEM J, V316, P1