Powers of Principal Q-Borel ideals

被引:1
作者
Camps-Moreno, Eduardo [1 ]
Kohne, Craig [2 ]
Sarmiento, Eliseo [1 ]
Van Tuyl, Adam [2 ]
机构
[1] Escuela Super Fis & Matemat, Mexico City, DF, Mexico
[2] McMaster Univ, Hamilton, ON, Canada
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2022年 / 65卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
monomial ideals; Q-Borel; symbolic powers; analytic spread; persistence of primes; SYMBOLIC POWERS;
D O I
10.4153/S0008439521000606
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix a poset Q on {x(1), ... , x(n)}. A Q-Borel monomial ideal I subset of K[x(1), ... , x(n)] is a monomial ideal whose monomials are closed under the Borel-like moves induced by Q. A monomial ideal I is a principal Q-Borel ideal, denoted I = Q (m ), if there is a monomial m such that all the minimal generators of I can be obtained via Q-Borel moves from m. In this paper we study powers of principal Q-Borel ideals. Among our results, we show that all powers of Q(m) agree with their symbolic powers, and that the ideal Q( m) satisfies the persistence property for associated primes. We also compute the analytic spread of Q(m) in terms of the poset Q.
引用
收藏
页码:633 / 652
页数:20
相关论文
共 21 条
  • [1] Bhat A., 2019, THESIS OKLAHOMA STAT
  • [2] The Waldschmidt constant for squarefree monomial ideals
    Bocci, Cristiano
    Cooper, Susan
    Guardo, Elena
    Harbourne, Brian
    Janssen, Mike
    Nagel, Uwe
    Seceleanu, Alexandra
    Van Tuyl, Adam
    Vu, Thanh
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 44 (04) : 875 - 904
  • [3] COMPARING POWERS AND SYMBOLIC POWERS OF IDEALS
    Bocci, Cristiano
    Harbourne, Brian
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2010, 19 (03) : 399 - 417
  • [4] Camps-Moreno E., 2021, ARXIV210507307
  • [5] Carlini E., 2020, lecture notes of the unione matematica italiana, V27
  • [6] Conca A., 2020, ARXIV191001955
  • [7] Conca A., 2003, COLLECT MATH, V54, P137
  • [8] SYMBOLIC POWERS OF MONOMIAL IDEALS
    Cooper, Susan M.
    Embree, Robert J. D.
    Ha, Huy Tai
    Hoefel, Andrew H.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2017, 60 (01) : 39 - 55
  • [9] Dao H., 2018, SPRINGER P MATH STAT, V222, P387
  • [10] Uniform bounds and symbolic powers on smooth varieties
    Ein, L
    Lazarsfeld, R
    Smith, KE
    [J]. INVENTIONES MATHEMATICAE, 2001, 144 (02) : 241 - 252