Homogeneous monogenic functions in Euclidean space

被引:6
|
作者
Sommen, F [1 ]
Van Lancker, P [1 ]
机构
[1] Univ Ghent, Dept Math Anal, B-9000 Ghent, Belgium
关键词
monogenic functions; Clifford algebras; harmonic analysis; Dirac operators;
D O I
10.1080/10652469808819205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper illustrates that the theory of monogenic functions satisfying a fixed homogeneity condition leads to a new function theory, parallel to but different from the standard theory of monogenic functions. The function theory thus obtained includes the theory of the Dirac operator on the unit sphere.
引用
收藏
页码:285 / 298
页数:14
相关论文
共 50 条
  • [1] k-Monogenic Functions Over 6-Dimensional Euclidean Space
    Qianqian Kang
    Wei Wang
    Complex Analysis and Operator Theory, 2018, 12 : 1219 - 1235
  • [2] k-Monogenic Functions Over 6-Dimensional Euclidean Space
    Kang, Qianqian
    Wang, Wei
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (05) : 1219 - 1235
  • [3] On a Chain of Harmonic and Monogenic Potentials in Euclidean Half–space
    F. Brackx
    H. De Bie
    H. De Schepper
    Potential Analysis, 2014, 41 : 613 - 645
  • [4] Representation of Distributions by Harmonic and Monogenic Potentials in Euclidean Space
    Brackx, F.
    De Bie, H.
    De Schepper, H.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (01) : 31 - 52
  • [5] Representation of Distributions by Harmonic and Monogenic Potentials in Euclidean Space
    F. Brackx
    H. De Bie
    H. De Schepper
    Advances in Applied Clifford Algebras, 2015, 25 : 31 - 52
  • [6] Spherical functions on Euclidean space
    Wolf, Joseph A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 239 (01) : 127 - 136
  • [7] On a Chain of Harmonic and Monogenic Potentials in Euclidean Half-space
    Brackx, F.
    De Bie, H.
    De Schepper, H.
    POTENTIAL ANALYSIS, 2014, 41 (02) : 613 - 645
  • [8] Distinct Distances in Homogeneous Sets in Euclidean Space
    Jozsef Solymosi
    Csaba D. Toth
    Discrete & Computational Geometry, 2006, 35 : 537 - 549
  • [9] Distinct distances in homogeneous sets in Euclidean space
    Solymosi, J
    Tóth, CD
    DISCRETE & COMPUTATIONAL GEOMETRY, 2006, 35 (04) : 537 - 549
  • [10] Almost Extrinsically Homogeneous Submanifolds of Euclidean Space
    Peter Quast
    Annals of Global Analysis and Geometry, 2006, 29 : 1 - 16