Relative entropy and curved spacetimes

被引:19
作者
Ciolli, Fabio [1 ]
Longo, Roberto [1 ]
Ranallo, Alessio [1 ]
Ruzzi, Giuseppe [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
关键词
Local quantum field theory; Operator algebras; Modular theory; QFT on curved spacetimes; Quantum information; Entropy/energy inequalities; QUANTUM-FIELDS; STATES; STATIONARY; UNIQUENESS;
D O I
10.1016/j.geomphys.2021.104416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given any half-sided modular inclusion of standard subspaces, we show that the entropy function associated with the decreasing one-parameter family of translated standard subspaces is convex for any given (not necessarily smooth) vector in the underlying Hilbert space. In second quantisation, this infers the convexity of the vacuum relative entropy with respect to the translation parameter of the modular tunnel of von Neumann algebras. This result allows us to study the QNEC inequality for coherent states in a free Quantum Field Theory on a stationary curved spacetime, given a KMS state. To this end, we define wedge regions and appropriate (deformed) subregions. Examples are given by the Schwarzschild spacetime and null translated subregions with respect to the time translation Killing flow. More generally, we define wedge and strip regions on a globally hyperbolic spacetime, so to have non trivial modular inclusions of von Neumann algebras, and make our analysis in this context. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 39 条
  • [1] Extension of the structure theorem of Borchers and its application to half-sided modular inclusions
    Araki, H
    Zsidó, L
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2005, 17 (05) : 491 - 543
  • [2] Araki H., 1976, PUBL RES I MATH SCI, V11, P809, DOI DOI 10.2977/PRIMS/1195191148
  • [3] On smooth Cauchy hypersurfaces and Geroch's splitting theorem
    Bernal, AN
    Sánchez, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 243 (03) : 461 - 470
  • [4] Further results on the smoothability of cauchy hypersurfaces and Cauchy time functions
    Bernal, Antonio N.
    Sanchez, Miguel
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2006, 77 (02) : 183 - 197
  • [5] DUALITY CONDITION FOR A HERMITIAN SCALAR FIELD
    BISOGNANO, JJ
    WICHMANN, EH
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (04) : 985 - 1007
  • [6] Borchers HJ, 1999, ANN I H POINCARE-PHY, V70, P23
  • [7] Modular groups of quantum fields in thermal states
    Borchers, HJ
    Yngvason, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) : 601 - 624
  • [8] Quantum focusing conjecture
    Bousso, Raphael
    Fisher, Zachary
    Leichenauer, Stefan
    Wall, Aron C.
    [J]. PHYSICAL REVIEW D, 2016, 93 (06)
  • [9] Modular localization and Wigner particles
    Brunetti, R
    Guido, D
    Longo, R
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (7-8) : 759 - 785
  • [10] Thermal States in Conformal QFT. II
    Camassa, Paolo
    Longo, Roberto
    Tanimoto, Yoh
    Weiner, Mihaly
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 315 (03) : 771 - 802