Utility of protein structures in overcoming ADMET-related issues of drug-like compounds

被引:35
|
作者
Stoll, Friederike [1 ]
Goeller, Andreas H. [1 ]
Hillisch, Alexander [1 ]
机构
[1] Bayer HealthCare, Global Drug Discovery, Med Chem, D-42096 Wuppertal, Germany
关键词
PREGNANE-X-RECEPTOR; HUMAN SERUM-ALBUMIN; HERG POTASSIUM CHANNEL; MULTIDRUG ABC TRANSPORTER; HUMAN CYTOCHROME P4502C9; HUMAN P-GLYCOPROTEIN; MODELING APPROACH; CRYSTAL-STRUCTURE; MOLECULAR-BASIS; IN-SILICO;
D O I
10.1016/j.drudis.2011.04.008
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The number of solved X-ray structures of proteins relevant for ADMET processes of drug molecules has increased remarkably over recent years. In principle, this development offers the possibility to complement the quantitative structure-property relationship (QSPR)-dominated repertoire of in silico ADMET methods with protein-structure-based approaches. However, the complex nature and the weak nonspecific ligand-binding properties of ADMET proteins take structural biology methods and current docking programs to the limit. In this review we discuss the utility of protein-structure-based design and docking approaches aimed at overcoming issues related to plasma protein binding, active transport via P-glycoprotein, hERG channel mediated cardiotoxicity and cytochrome P450 inhibition, metabolism and induction.
引用
收藏
页码:530 / 538
页数:9
相关论文
共 50 条
  • [1] Drug-like index: A new approach to measure drug-like compounds and their diversity
    Xu, J
    Stevenson, J
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2000, 40 (05): : 1177 - 1187
  • [2] Improving the odds in discriminating "Drug-like" from "Non Drug-like" compounds
    Frimurer, TM
    Bywater, R
    Nærum, L
    Lauritsen, LN
    Brunak, S
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2000, 40 (06): : 1315 - 1324
  • [3] Predicting protein targets for drug-like compounds using transcriptomics
    Pabon, Nicolas A.
    Xia, Yan
    Estabrooks, Samuel K.
    Ye, Zhaofeng
    Herbrand, Amanda K.
    Suss, Evelyn
    Biondi, Ricardo M.
    Assimon, Victoria A.
    Gestwicki, Jason E.
    Brodsky, Jeffrey L.
    Camacho, Carlos J.
    Bar-Joseph, Ziv
    PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (12)
  • [4] Historeceptomic Fingerprints for Drug-Like Compounds
    Shmelkov, Evgeny
    Grigoryan, Arsen
    Swetnam, James
    Xin, Junyang
    Tivon, Doreen
    Shmelkov, Sergey V.
    Cardozo, Timothy
    FRONTIERS IN PHYSIOLOGY, 2015, 6
  • [5] Selection criteria for drug-like compounds
    Muegge, I
    MEDICINAL RESEARCH REVIEWS, 2003, 23 (03) : 302 - 321
  • [6] Prediction of the Corneal Permeability of Drug-Like Compounds
    Heidi Kidron
    Kati-Sisko Vellonen
    Eva M. del Amo
    Anita Tissari
    Arto Urtti
    Pharmaceutical Research, 2010, 27 : 1398 - 1407
  • [7] Prediction of the Corneal Permeability of Drug-Like Compounds
    Kidron, Heidi
    Vellonen, Kati-Sisko
    del Amo, Eva M.
    Tissari, Anita
    Urtti, Arto
    PHARMACEUTICAL RESEARCH, 2010, 27 (07) : 1398 - 1407
  • [8] Rational design of drug-like compounds targeting Mycobacterium marinum MelF protein
    Dharra, Renu
    Talwar, Sakshi
    Singh, Yogesh
    Gupta, Rani
    Cirillo, Jeffrey D.
    Pandey, Amit K.
    Kulharia, Mahesh
    Mehta, Promod K.
    PLOS ONE, 2017, 12 (09):
  • [9] The most common chemical replacements in drug-like compounds
    Sheridan, RP
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (01): : 103 - 108
  • [10] (Q)SAR Models of HIV-1 Protein Inhibition by Drug-Like Compounds
    Stolbov, Leonid A.
    Druzhilovskiy, Dmitry S.
    Filimonov, Dmitry A.
    Nicklaus, Marc C.
    Poroikov, Vladimir V.
    MOLECULES, 2020, 25 (01):