Thermal convection in a nonlinear non-Newtonian magnetic fluid

被引:19
作者
Laroze, D. [1 ,2 ,3 ]
Pleiner, H. [2 ]
机构
[1] Univ Tarapaca, Inst Alta Invest, Arica, Chile
[2] Max Planck Inst Polymer Res, D-55021 Mainz, Germany
[3] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Thermal convection; Magnetic fluid; Viscoelastic fluid; THERMOMAGNETIC CONVECTION; STATIONARY CONVECTION; AMPLITUDE EQUATION; HEAT-TRANSFER; DYNAMICS; FIELD; BIODISTRIBUTION; OVERSTABILITY; FERROFLUIDS; INSTABILITY;
D O I
10.1016/j.cnsns.2015.01.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We report theoretical and numerical results on thermal convection of a magnetic fluid in a viscoelastic carrier liquid. The viscoelastic properties are described by a general nonlinear viscoelastic model that contains as special cases the standard phenomenological constitutive equations for the stress tensor. In order to explore numerically the system we perform a truncated Galerkin expansion obtaining a generalized Lorenz system with ten modes. We find numerically that the system has stationary, periodic and chaotic regimes. We establish phase diagrams to identify the different dynamical regimes as a function of the Rayleigh number and the viscoelastic material parameters. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:167 / 183
页数:17
相关论文
共 69 条
[1]   Characterization of chaotic thermal convection of viscoelastic fluids [J].
Abu-Ramadan, E ;
Hay, JM ;
Khayat, RE .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2003, 115 (2-3) :79-113
[2]   Magnetic drug targeting - Biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment [J].
Alexiou, C ;
Jurgons, R ;
Schmid, RJ ;
Bergemann, C ;
Henke, J ;
Erhardt, W ;
Huenges, E ;
Parak, F .
JOURNAL OF DRUG TARGETING, 2003, 11 (03) :139-149
[3]   Magnetic drug targeting: biodistribution and dependency on magnetic field strength [J].
Alexiou, C ;
Schmidt, A ;
Klein, R ;
Hulin, P ;
Bergemann, C ;
Arnold, W .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 252 (1-3) :363-366
[4]  
Alexiou C, 2000, CANCER RES, V60, P6641
[5]   On the linear stability analysis of a Maxwell fluid with double-diffusive convection [J].
Awad, F. G. ;
Sibanda, P. ;
Motsa, Sandile S. .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (11) :3509-3517
[6]  
Baskurt OK, 2003, SEMIN THROMB HEMOST, V29, P435
[7]   Enhancing natural convection in a cube using a strong magnetic field - Experimental heat transfer rate measurements and flow visualization [J].
Bednarz, Tomasz ;
Patterson, John C. ;
Lei, Chengwang ;
Ozoe, Hiroyuki .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2009, 36 (08) :781-786
[8]   Suppressing Rayleigh-Benard convection in a cube using a strong magnetic field - Experimental heat transfer rate measurements and flow visualization [J].
Bednarz, Tomasz P. ;
Lei, Chengwang ;
Patterson, John C. ;
Ozoe, Hiroyuki .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2009, 36 (02) :97-102
[9]  
Berkovsky BM., 1973, The magnetic fluids, engineering application
[10]  
Bishop JJ, 2001, BIORHEOLOGY, V38, P263