Singular Lidstone boundary value problem with given maximal values for solutions

被引:28
作者
Agarwal, RP
O'Regan, D [1 ]
Stanek, S
机构
[1] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
[2] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[3] Palacky Univ, Fac Sci, Dept Math Anal, Olomouc 77900, Czech Republic
关键词
singular Lidstone boundary value problem; dependence on a parameter; existence; positive solution; Leray-Schauder degree; Vitali's convergence theorem;
D O I
10.1016/j.na.2003.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The singular problem (-1)(n)x((2n))=muf(t,x,...,x((2n-2))), x((2j))(0)=x((2j))(T)=0 (0less than or equal tojless than or equal ton - 1), max{x(t) : 0 less than or equal to t less than or equal to T} = A depending on the parameter mu is considered. Here the positive Caratheodory function f may be singular at the zero value of all its phase variables. The paper presents conditions which guarantee that for any A > 0 there exists mu(A) > 0 such that the above problem with mu = mu(A) has a solution x is an element of AC(2n - 1)([0, T]) which is positive on (0, T). The proofs are based on the regularization and sequential techniques and use the Leray-Schauder degree and Vitali's convergence theorem. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:859 / 881
页数:23
相关论文
共 31 条
[21]   ON A CLASS OF FUNCTIONAL BOUNDARY-VALUE-PROBLEMS FOR NONLINEAR 3RD-ORDER FUNCTIONAL-DIFFERENTIAL EQUATIONS DEPENDING ON THE PARAMETER [J].
STANEK, S .
ARCHIV DER MATHEMATIK, 1994, 62 (05) :462-469
[22]   ON A CLASS OF 5-POINT BOUNDARY-VALUE-PROBLEMS IN 2ND-ORDER FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH PARAMETER [J].
STANEK, S .
ACTA MATHEMATICA HUNGARICA, 1993, 62 (3-4) :253-262
[23]   Positive solutions of singular Dirichlet and periodic boundary value problems [J].
Stanek, S .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (6-7) :681-692
[24]   Positive solutions of singular positone Dirichlet boundary value problems [J].
Stanek, S .
MATHEMATICAL AND COMPUTER MODELLING, 2001, 33 (4-5) :341-351
[25]  
STANEK S, 1994, ANN POL MATH, V59, P225
[26]  
Taliaferro S. D., 1979, Nonlinear Analysis Theory, Methods & Applications, V3, P897, DOI 10.1016/0362-546X(79)90057-9
[27]   EXISTENCE THEOREMS FOR A SINGULAR 2-POINT DIRICHLET PROBLEM [J].
TINEO, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (04) :323-333
[28]   SOLVABILITY OF SINGULAR NONLINEAR 2-POINT BOUNDARY-VALUE-PROBLEMS [J].
WANG, JU .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (04) :555-561
[29]   Results and estimates on multiple solutions of lidstone boundary value problems [J].
Wong, PJY ;
Agarwal, RP .
ACTA MATHEMATICA HUNGARICA, 2000, 86 (1-2) :137-168
[30]   Eigenvalues of Lidstone boundary value problems [J].
Wong, PJY ;
Agarwal, RP .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 104 (01) :15-31