Singular Lidstone boundary value problem with given maximal values for solutions

被引:28
作者
Agarwal, RP
O'Regan, D [1 ]
Stanek, S
机构
[1] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
[2] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[3] Palacky Univ, Fac Sci, Dept Math Anal, Olomouc 77900, Czech Republic
关键词
singular Lidstone boundary value problem; dependence on a parameter; existence; positive solution; Leray-Schauder degree; Vitali's convergence theorem;
D O I
10.1016/j.na.2003.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The singular problem (-1)(n)x((2n))=muf(t,x,...,x((2n-2))), x((2j))(0)=x((2j))(T)=0 (0less than or equal tojless than or equal ton - 1), max{x(t) : 0 less than or equal to t less than or equal to T} = A depending on the parameter mu is considered. Here the positive Caratheodory function f may be singular at the zero value of all its phase variables. The paper presents conditions which guarantee that for any A > 0 there exists mu(A) > 0 such that the above problem with mu = mu(A) has a solution x is an element of AC(2n - 1)([0, T]) which is positive on (0, T). The proofs are based on the regularization and sequential techniques and use the Leray-Schauder degree and Vitali's convergence theorem. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:859 / 881
页数:23
相关论文
共 31 条
[11]  
Hewitt E, 1965, Real and Abstract Analysis
[12]   Monotone iterations for first order differential equations with a parameter [J].
Jankowski, T .
ACTA MATHEMATICA HUNGARICA, 1999, 84 (1-2) :65-80
[13]  
Kiguradze I. T., 1987, SOVREM PROBL MAT NOV, V30, P105
[14]  
KURPEL NS, 1980, UKR MAT ZH, V32, P223
[15]  
LOMTATIDZE A, IN PRESS CZECH MATH
[16]  
Natanson I. P., 1969, THEORIE FUNKTIONEN R
[17]  
O'Regan D., 1995, DIFF EQUAT, V3, P289
[18]  
O'Regan D, 1994, THEORY SINGULAR BOUN
[19]  
RONTO M, 1996, PUBL U MISKOLC D, V36, P125
[20]   ON FUNCTIONAL BOUNDARY-VALUE-PROBLEMS FOR SYSTEMS OF FUNCTIONAL-DIFFERENTIAL EQUATIONS DEPENDING ON PARAMETERS [J].
STANEK, S .
ARCHIV DER MATHEMATIK, 1995, 64 (05) :434-443