On the structure of the commutator subgroup of certain homeomorphism groups

被引:3
|
作者
Michalik, Ilona [1 ]
Rybicki, Tomasz [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
关键词
Group of homeomorphisms; Factorizable group; Commutator subgroup; Perfectness; Uniform perfectness; Simplicity; Uniform simplicity; Open manifold; LIPSCHITZ HOMEOMORPHISMS; DIFFEOMORPHISMS; FOLIATION; PERFECT;
D O I
10.1016/j.topol.2011.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An important theorem of Ling states that if G is any factorizable non-fixing group of homeomorphisms of a paracompact space then its commutator subgroup [G, G] is perfect. This paper is devoted to further studies on the algebraic structure (e.g. uniform perfectness, uniform simplicity) of [G, G] and [(G) over tilde, (G) over tilde], where (G) over tilde is the universal covering group of G. In particular, we prove that if G is a bounded factorizable non-fixing group of homeomorphisms then [G, G] is uniformly perfect (Corollary 3.4). The case of open manifolds is also investigated. Examples of homeomorphism groups illustrating the results are given. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1314 / 1324
页数:11
相关论文
共 50 条
  • [1] HOMEOMORPHISM GROUPS OF COMMUTATOR WIDTH ONE
    Tsuboi, Takashi
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (05) : 1839 - 1847
  • [2] GROUPS WITH MINIMAX COMMUTATOR SUBGROUP
    De Giovanni, F.
    Trombetti, M.
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2014, 3 (01) : 9 - 16
  • [3] The size of the commutator subgroup of finite groups
    Herzog, Marcel
    Kaplan, Gil
    Lev, Arieh
    JOURNAL OF ALGEBRA, 2008, 320 (03) : 980 - 986
  • [4] Central Quotient Versus Commutator Subgroup of Groups
    Yadav, Manoj K.
    ALGEBRA AND ITS APPLICATIONS, ICAA 2014, 2016, 174 : 183 - 194
  • [5] On the structure of the homeomorphism and diffeomorphism groups fixing a point
    Lech, Jacek
    Michalik, Ilona
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (03): : 435 - 447
  • [6] Automorphism groups with cyclic commutator subgroup and Hamilton cycles
    Dobson, E
    Gavlas, H
    Morris, J
    Witte, D
    DISCRETE MATHEMATICS, 1998, 189 (1-3) : 69 - 78
  • [7] STRUCTURE THEOREMS FOR ACTIONS OF HOMEOMORPHISM GROUPS
    Chen, Lei
    Mann, Kathryn
    DUKE MATHEMATICAL JOURNAL, 2023, 172 (05) : 915 - 962
  • [8] On finite alperin p-groups with homocyclic commutator subgroup
    Veretennikov, B. M.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2012, 279 : S139 - S151
  • [9] INVARIANTS OF FINITE p-GROUPS WITH A MINIMAL COMMUTATOR SUBGROUP
    Keranova, Neli T.
    Nachev, Nako A.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2015, 68 (01): : 5 - 10
  • [10] On finite Alperin p-groups with homocyclic commutator subgroup
    Veretennikov, B. M.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (04): : 53 - 65