On the Mann-type iteration and the convex feasibility problem

被引:56
作者
Maruster, Stefan [1 ]
Popirlan, Cristina [2 ]
机构
[1] W Univ Timisoara, Inst eAustria Timisoara, Timisoara, Romania
[2] Univ Craiova, Craiova, Romania
关键词
Mann-type iteration; convex feasibility problem; weak and strong convergence; projection methods;
D O I
10.1016/j.cam.2006.12.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The weak and strong convergence of a sequence generated by a Mann-type iteration are investigated in the frame of a real Hilbert space. Some applications to the projection method for the convex feasibility problem are given. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:390 / 396
页数:7
相关论文
共 25 条
[1]   THE RELAXATION METHOD FOR LINEAR INEQUALITIES [J].
AGMON, S .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (03) :382-392
[2]   A decomposition method for variational inequalities of the second kind with strongly inverse-monotone operators [J].
Badriev, IB ;
Zadvornov, OA .
DIFFERENTIAL EQUATIONS, 2003, 39 (07) :936-944
[3]   Convergence analysis of iterative methods for some variational inequalities with pseudomonotone operators [J].
Badriev, IB ;
Zadvornov, OA ;
Saddek, AM .
DIFFERENTIAL EQUATIONS, 2001, 37 (07) :934-942
[4]  
Badriev IB., 2003, Comput Methods Appl Math, V2, P223, DOI [10.2478/cmam-2003-0015, DOI 10.2478/CMAM-2003-0015]
[5]   A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces [J].
Bauschke, HH ;
Combettes, PL .
MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) :248-264
[6]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[7]  
BAUSCHKE HH, 2002, METHODS REFLECTION P
[8]  
Bregman L. M., 1965, SOV MATH DOKL, V6, P688
[9]  
Chidume C.E., 1994, Dynam. Systems Appl, V3, P349
[10]  
Chidume C.E., 1984, J. Nigerian Math. Soc, V3, P57