Formation Mechanism via a Heterocoagulation Approach of FePt Nanoparticles Using the Modified Polyol Process

被引:30
作者
Beck, Watson, Jr. [1 ]
Souza, Caio G. S. [1 ]
Silva, Tiago L. [1 ]
Jafelicci, Miguel, Jr. [2 ]
Varanda, Laudemir C. [1 ]
机构
[1] Univ Sao Paulo USP, Inst Quim Sao Carlos, Colloidal Mat Grp, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Estadual Paulista UNESP, Inst Quim Araraquara, Dept Quim Fis, Araraquara, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
MAGNETIC RECORDING MEDIA; ORDERING TEMPERATURE; HIGH COERCIVITY; CO SPILLOVER; SIZE; NANOCRYSTALS; REDUCTION; OXIDATION; FILMS; NUCLEATION;
D O I
10.1021/jp201830m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, we report a new approach of an FePt nanoparticle formation mechanism studying the evolution of particle size and composition during the synthesis using the modified polyol process. One of the factors limiting their application in ultra-high-density magnetic storage media is the particle-to-particle composition, which affects the A1-to-L1(0) transformation as well as their magnetic properties. There are many controversies in the literature concerning the mechanism of the FePt formation, which seems to be the key to understanding the compositional chemical distribution. Our results convincingly show that, initially, Pt nuclei are formed due to reduction of Pt(acac)(2) by the diol, followed by heterocoagulation of Fe cluster species formed from Fe(acac)(3) thermal decomposition onto the Pt nuclei. Complete reduction of heterocoagulated iron species seems to involve a CO-spillover process, in which the Pt nuclei surface acts as a heterogeneous catalyst, leading to the improvement of the single-particle composition control and allowing a much narrower compositional distribution. Our results show significant decreases in the particle-to-particle composition range, improving the A1-to-L1(0) phase transformation and, consequently, the magnetic properties when compared with other reported methods.
引用
收藏
页码:10475 / 10482
页数:8
相关论文
共 51 条
[1]   Nucleation and Growth Mechanism of NixPt1-x Nanoparticles [J].
Ahrenstorf, Kirsten ;
Heller, Hauke ;
Kornowski, Andreas ;
Broekaert, Jose A. C. ;
Weller, Horst .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (23) :3850-3856
[2]   Enhanced orbital magnetism in Fe50Pt50 nanoparticles [J].
Antoniak, C. ;
Lindner, J. ;
Spasova, M. ;
Sudfeld, D. ;
Acet, M. ;
Farle, M. ;
Fauth, K. ;
Wiedwald, U. ;
Boyen, H. -G. ;
Ziemann, P. ;
Wilhelm, F. ;
Rogalev, A. ;
Sun, Shouheng .
PHYSICAL REVIEW LETTERS, 2006, 97 (11)
[3]  
Báez VB, 2000, VIS TECNOL, V7, P91
[4]   Formation of FePt nanoparticles by organometallic synthesis [J].
Bagaria, H. G. ;
Johnson, D. T. ;
Srivastava, C. ;
Thompson, G. B. ;
Shamsuzzoha, M. ;
Nikles, D. E. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (10)
[5]   Determination of nanocrystal sizes:: A comparison of TEM, SAXS, and XRD studies of highly monodisperse COPt3 particles [J].
Borchert, H ;
Shevehenko, EV ;
Robert, A ;
Mekis, I ;
Kornowski, A ;
Grübel, G ;
Weller, H .
LANGMUIR, 2005, 21 (05) :1931-1936
[6]  
Borman S, 2000, CHEM ENG NEWS, V78, P24
[7]   Oxidation-resistant gold-55 clusters [J].
Boyen, HG ;
Kästle, G ;
Weigl, F ;
Koslowski, B ;
Dietrich, C ;
Ziemann, P ;
Spatz, JP ;
Riethmüller, S ;
Hartmann, C ;
Möller, M ;
Schmid, G ;
Garnier, MG ;
Oelhafen, P .
SCIENCE, 2002, 297 (5586) :1533-1536
[8]   FePt-C graded media for ultra-high density magnetic recording [J].
Chen, J. S. ;
Huang, L. S. ;
Hu, J. F. ;
Ju, G. ;
Chow, G. M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (18)
[9]   Development of L10 FePt:C (001) Thin Films With High Coercivity and Small Grain Size for Ultra-High-Density Magnetic Recording Media [J].
Chen, J. S. ;
Hu, J. F. ;
Lim, B. C. ;
Ding, Y. F. ;
Chow, G. M. ;
Ju, G. .
IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (02) :839-844
[10]   One-step synthesis of FePt nanoparticles with tunable size [J].
Chen, M ;
Liu, JP ;
Sun, SH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (27) :8394-8395