The prepared and electrochemical property of Mg-doped LiMn0.6Fe0.4PO4/C as cathode materials for lithium-ion batteries

被引:30
|
作者
Zhang, Kaicheng [1 ]
Cao, Jingrui [1 ]
Tian, Shiyu [1 ]
Guo, Hongyuan [1 ]
Liu, Ruoxuan [1 ]
Ren, Xin [1 ]
Wen, Lizhi [2 ]
Liang, Guangchuan [1 ,3 ,4 ]
机构
[1] Hebei Univ Technol, Inst Power Source & Eco Mat Sci, Tianjin 300130, Peoples R China
[2] Tianjin Sino German Univ Appl Sci, Automobile & Rail Transportat Sch, Tianjin 300350, Peoples R China
[3] Hebei Univ Technol, Key Lab Special Funct Mat Ecol Environm & Informa, Minist Educ, Tianjin 300130, Peoples R China
[4] Hebei Univ Technol, Key Lab New Type Funct Mat Hebei Prov, Tianjin 300130, Peoples R China
关键词
LiMn0 6Fe0 4PO4 (LMFP); Mg-doped; Lithium-ion batteries; Electrochemical performance; PHOSPHO-OLIVINES; PERFORMANCE; LIMNPO4; FE; LIMN0.8FE0.2PO4; FACILE;
D O I
10.1007/s11581-021-04183-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Driven by the demand for high-performance lithium-ion batteries, improving the energy density and high rate discharge performance is the key goal of current battery research. Here, Mg-doped LiMn0.6Fe0.4PO4 (LMFP) cathode materials are synthesized by the solid-phase method. The effects of different doping amounts of Mg on the microstructure and electrochemical properties of LMFP materials were studied. The results show that Mg is successfully doped into LMFP to reduce the lattice volume. Large doping of Mg will distort the lattice. LiMn0.6Fe0.39Mg0.01PO4/C has the best electrochemical performance, with a discharge capacity of 159.6 mAh g(-1) at 0.2 C and 124.5 mAh g(-1) even at 10 C. EIS shows that the electrochemical impedance of the sample is significantly reduced and the diffusion coefficient of lithium-ion is increased after the doping of proper amount of Mg. The successful synthesis of the material provides a reference for the preparation of high rate discharge cathode materials.
引用
收藏
页码:4629 / 4637
页数:9
相关论文
共 50 条
  • [21] An Investigation on the Electrochemical and Thermal Characteristics of LiMn0.6Fe0.4PO4/LiNi0.5Co0.2Mn0.3O2 Composite Cathode Materials for Lithium-Ion Batteries in Different Health States
    He, Kepiao
    Xiong, Yonglian
    Zhang, Chao
    Dou, Zhiting
    Yi, Ting
    Lin, Shengqiang
    Li, Chunsheng
    Sun, Yan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (09)
  • [22] Synthesis and Electrochemical Characterization of LiMn0.6Fe0.4PO4/C Cathode Material via a Modified-Solid State Reaction Method
    Kim, Hyun-Ju
    Jin, Bong-Soo
    Bae, Dong-Sik
    Kim, Seong-Bae
    Kim, Hyun-Soo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (05) : 3276 - 3281
  • [23] Graphene oxide assisted facile hydrothermal synthesis of LiMn0.6Fe0.4PO4 nanoparticles as cathode material for lithium ion battery
    Changchang Xu
    Li Li
    Fangyuan Qiu
    Cuihua An
    Yanan Xu
    Ying Wang
    Yijing Wang
    Lifang Jiao
    Huatang Yuan
    Journal of Energy Chemistry, 2014, (03) : 397 - 402
  • [24] Enhanced electrochemical performance of Ni2+ doped carbon coated LiMn0.5Fe0.5PO4 nanocomposites as cathode materials for lithium-ion batteries
    Chen, Qi
    You, Junjie
    Du, Chuanqing
    Wang, Yourong
    Cheng, Siqing
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2025, 20 (05):
  • [25] Hydrothermal synthesis of Mg-doped LiMn2O4 spinel cathode materials with high cycling performance for lithium-ion batteries
    Luo, Fenglan
    Xie, Hongyan
    Jin, Huixin
    Han, Yelin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (06):
  • [26] Spherical Ni-doped LiMn0.6Fe0.4PO4/C composites with high-rate performance
    Tian, Shiyu
    Zhang, Kaicheng
    Cao, Jingrui
    Guo, Hongyuan
    Liu, Ruoxuan
    Liang, Guangchuan
    IONICS, 2021, 27 (07) : 2877 - 2887
  • [27] Synthesis and electrochemical characterizations of nano-crystalline LiFePO4 and Mg-doped LiFePO4 cathode materials for rechargeable lithium-ion batteries
    Arumugam, D.
    Kalaignan, G. Paruthimal
    Manisankar, P.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2009, 13 (02) : 301 - 307
  • [28] Synthesis and electrochemical properties of Mg-doped and Al-doped LiMnPO4•Li3V2(PO4)3/C cathode materials for lithium-ion batteries
    Dou, Lijun
    Han, Enshan
    Li, Ling
    Zhu, Lingzhi
    Qiao, Shunpan
    Liu, Hui
    IONICS, 2019, 25 (06) : 2487 - 2499
  • [29] Facile synthesis and excellent electrochemical performance of LiMn0.6Fe0.4PO4/C with 3D conductive network
    Weichao Tian
    Yi Zheng
    Kaicheng Zhang
    Xin Ren
    Shiyu Tian
    Jingrui Cao
    Lizhi Wen
    Guangchuan Liang
    Ionics, 2020, 26 : 5981 - 5989
  • [30] Synthesis and performance of LiMn0.6Fe0.4PO4/nano-carbon webs composite cathode
    Mi, CH
    Zhang, XG
    Zhao, XB
    Li, HL
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 129 (1-3): : 8 - 13