Ricci soliton solvmanifolds

被引:105
作者
Lauret, Jorge [1 ,2 ]
机构
[1] Univ Nacl Cordoba, FAMAF, RA-5000 Cordoba, Argentina
[2] Univ Nacl Cordoba, CIEM, RA-5000 Cordoba, Argentina
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2011年 / 650卷
关键词
MOMENT MAP; LIE-GROUPS; NILMANIFOLDS; MANIFOLDS; FLOW;
D O I
10.1515/CRELLE.2011.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
All known examples of nontrivial homogeneous Ricci solitons are left-invariant metrics on simply connected solvable Lie groups whose Ricci operator is a multiple of the identity modulo derivations (called solsolitons, and nilsolitons in the nilpotent case). The tools from geometric invariant theory used to study Einstein solvmanifolds, turned out to be useful in the study of solsolitons as well. We prove that, up to isometry, any solsoliton can be obtained via a very simple construction from a nilsoliton N together with any abelian Lie algebra of symmetric derivations of its metric Lie algebra (n, <. , .>). The following uniqueness result is also obtained: a given solvable Lie group can admit at most one solsoliton up to isometry and scaling. As an application, solsolitons of dimension <= 4 are classified.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 35 条
[1]  
Alekseevskii D., 1971, MAT SB, V84, P12
[2]  
Alekseevsky DV., 1975, FUNCTIONAL ANAL APPL, V9, P5, DOI DOI 10.1007/BF01075445
[3]   Product structures on four dimensional solvable Lie algebras [J].
Andrada, A. ;
Barberis, M. L. ;
Dotti, I. G. ;
Ovando, G. P. .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2005, 7 (01) :9-37
[4]  
[Anonymous], 1979, Lecture Notes in Mathematics
[5]  
[Anonymous], 1987, EINSTEIN MANIFOLDS E
[6]  
Ayala V., 1999, Am. Math. Soc. Ser. Symp. Pure Math, V64, P47
[7]   HOMOGENEOUS MANIFOLDS WITH NEGATIVE CURVATURE .1. [J].
AZENCOTT, R ;
WILSON, EN .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 215 (JAN) :323-362
[8]   Three-dimensional Ricci solitons which project to surfaces [J].
Baird, Paul ;
Danielo, Laurent .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 :65-91
[9]   A variational approach for compact homogeneous Einstein manifolds [J].
Böhm, C ;
Wang, M ;
Ziller, W .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (04) :681-733
[10]  
CHOW B, 2007, AMS MATH SURV MONOGR, V135