Pulmonary Nodule Detection Based on Faster R-CNN With Adaptive Anchor Box

被引:22
|
作者
Nguyen, Chi Cuong [1 ]
Tran, Giang Son [1 ]
Nguyen, Van Thi [2 ]
Burie, Jean-Christophe [3 ]
Nghiem, Thi Phuong [1 ]
机构
[1] Univ Sci & Technol Hanoi, Vietnam Acad Sci & Technol, ICTLab, Hanoi 100000, Vietnam
[2] Vietnam Natl Canc Hosp, Dept Radiol, Hanoi 110000, Vietnam
[3] La Rochelle Univ, L3i Lab, F-17000 La Rochelle, France
来源
IEEE ACCESS | 2021年 / 9卷
关键词
Lung; Sensitivity; Computed tomography; Three-dimensional displays; Feature extraction; Lung cancer; Proposals; Pulmonary nodules; CT~images; deep learning; faster R-CNN; anchor box; FALSE-POSITIVE REDUCTION; AUTOMATIC DETECTION; LUNG NODULES; MEAN SHIFT; IMAGES; VALIDATION; ENSEMBLE;
D O I
10.1109/ACCESS.2021.3128942
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Early pulmonary nodule detection is very important in lung cancer diagnosis and screening. Most state-of-the-art lung nodule detection models are based on Faster Region-based Convolutional Neural Network (Faster R-CNN) due to its superior performance. However, this object detection approach faces difficulties with the variety of nodule sizes in training datasets. In this paper, we propose a novel Computer-Aided Detection (CAD) system based on Faster R-CNN model with adaptive anchor box for lung nodule detection. Our method employs ground-truth nodule sizes in the training dataset to generate adaptive anchor box sizes of Faster R-CNN. Learned anchors are used as hyper-parameter to boost Faster R-CNN's detection performance. A residual convolutional neural network is proposed to reduce false positives from Faster R-CNN's output. Our method is trained and tested on the largest publicly available LUNA16 dataset. Experiments show that our proposed system achieves a high sensitivity of 95.64% at 1.72 false positives per scan, and a Competition Performance Metric (CPM) score of 88.2%, which outperforms other recent state-of-the-art detection methods. The false positive reduction network achieves a sensitivity of 93.8%, specificity of 97.6% and accuracy of 95.7%. An additional evaluation on a completely independent SPIE-AAPM dataset demonstrates the generalization of our proposed model with 89.3% sensitivity.
引用
收藏
页码:154740 / 154751
页数:12
相关论文
共 50 条
  • [41] Region-based Object Detection and Classification using Faster R-CNN
    Abbas, Syed Mazhar
    Singh, Shailendra Narayan
    2018 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE & COMMUNICATION TECHNOLOGY (CICT), 2018,
  • [42] Insulator Detection Method in Inspection Image Based on Improved Faster R-CNN
    Zhao, Zhenbing
    Zhen, Zhen
    Zhang, Lei
    Qi, Yincheng
    Kong, Yinghui
    Zhang, Ke
    ENERGIES, 2019, 12 (07)
  • [43] An Improved Faster R-CNN Pedestrian Detection Algorithm Based on Feature Fusion and Context Analysis
    Zhai, Sheping
    Dong, Susu
    Shang, Dingrong
    Wang, Shuhuan
    IEEE ACCESS, 2020, 8 (08): : 138117 - 138128
  • [44] Railroad Catenary Insulator Fault Detection Based on Improved Faster R-CNN
    Yi L.
    Dong T.
    Wang Y.
    She H.
    Yi C.
    Yu G.
    Recent Pat. Mech. Eng., 4 (243-259): : 243 - 259
  • [45] Pavement Sealed Crack Detection Method Based on Improved Faster R-CNN
    Sun Z.
    Pei L.
    Li W.
    Hao X.
    Chen Y.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2020, 48 (02): : 84 - 93
  • [46] Ganster R-CNN: Occluded Object Detection Network Based on Generative Adversarial Nets and Faster R-CNN
    Sun, Kelei
    Wen, Qiufen
    Zhou, Huaping
    IEEE ACCESS, 2022, 10 : 105022 - 105030
  • [47] Handwriting Text Recognition Based on Faster R-CNN
    Yang, Junqing
    Ren, Peng
    Kong, Xiaoxiao
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2450 - 2454
  • [48] Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images
    M. Emin Sahin
    Hasan Ulutas
    Esra Yuce
    Mustafa Fatih Erkoc
    Neural Computing and Applications, 2023, 35 : 13597 - 13611
  • [49] Lithology Identification Based on Improved Faster R-CNN
    Fu, Peng
    Wang, Jiyang
    MINERALS, 2024, 14 (09)
  • [50] Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images
    Sahin, M. Emin
    Ulutas, Hasan
    Yuce, Esra
    Erkoc, Mustafa Fatih
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (18) : 13597 - 13611