Loewy Modules with Finite Loewy Invariants and Max Modules with Finite Radical Invariants

被引:1
作者
Facchini, Alberto [1 ]
Mai Hoang Bien [1 ]
机构
[1] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
关键词
Endomorphism ring; Loewy module; Max module; Module; Semilocal ring;
D O I
10.1080/00927872.2014.891604
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Over a commutative ring R, a module is artinian if and only if it is a Loewy module with finite Loewy invariants [5]. In this paper, we show that this is not necesarily true for modules over noncommutative rings R, though every artinian module is always a Loewy module with finite Loewy invariants. We prove that every Loewy module with finite Loewy invariants has a semilocal endomorphism ring, thus generalizing a result proved by Camps and Dicks for artinian modules [3]. Finally, we obtain similar results for the dual class of max modules.
引用
收藏
页码:2293 / 2307
页数:15
相关论文
共 19 条
[1]  
Anderson D.W., 1992, RINGS CATEGORIES MOD, V13
[2]  
Bumby R. T., 1965, Arch. Math., V16, P184
[3]   ON SEMILOCAL RINGS [J].
CAMPS, R ;
DICKS, W .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 81 (1-2) :203-211
[4]  
Clark J., 2000, P 32 S RING THEOR RE, P23
[5]   Krull-Schmidt fails for serial modules [J].
Facchini, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (11) :4561-4575
[6]   LOEWY AND ARTINIAN-MODULES OVER COMMUTATIVE RINGS [J].
FACCHINI, A .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1981, 128 :359-374
[7]  
Facchini A., 1998, Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules
[8]   Local morphisms and modules with a semilocal endomorphism ring [J].
Facchini, Alberto ;
Herbera, Dolors .
ALGEBRAS AND REPRESENTATION THEORY, 2006, 9 (04) :403-422
[9]   Quotient finite dimensional modules with ACC on subdirectly irreducible submodules are Noetherian [J].
Faith, C .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (04) :1807-1810
[10]  
Faith C., 1999, MATH SURVEYS MONOGRA, V65