Proper scoring rules and Bregman divergence

被引:9
作者
Ovcharov, Evgeni Y. [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Acad Georgi Bonchev Str,Block 8, BU-1113 Sofia, Bulgaria
关键词
Bregman divergence; characterisation; convex analysis; entropy; proper scoring rule; robust estimation; subgradient; HEAVY CONTAMINATION; ROBUST; PROBABILITY; SCORES;
D O I
10.3150/16-BEJ857
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Proper scoring rules measure the quality of probabilistic forecasts. They induce dissimilarity measures of probability distributions known as Bregman divergences. We survey the literature on both entities and present their mathematical properties in a unified theoretical framework. Score and Bregman divergences are developed as a single concept. We formalize the proper affine scoring rules and present a motivating example from robust estimation. And lastly, we develop the elements of the regularity theory of entropy functions and describe under what conditions a general convex function may be identified as the entropy function of a proper scoring rule and whether this association is unique.
引用
收藏
页码:53 / 79
页数:27
相关论文
共 35 条
  • [1] [Anonymous], J MACH LEARN RES WOR
  • [2] Banerjee A, 2005, J MACH LEARN RES, V6, P1705
  • [3] On the optimality of conditional expectation as a Bregman predictor
    Banerjee, A
    Guo, X
    Wang, H
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (07) : 2664 - 2669
  • [4] Robust and efficient estimation by minimising a density power divergence
    Basu, A
    Harris, IR
    Hjort, NL
    Jones, MC
    [J]. BIOMETRIKA, 1998, 85 (03) : 549 - 559
  • [5] Bauschke H. H., 2001, STUD COMPUT MATH, V8, P23, DOI DOI 10.1016/S1570-579X(01)80004-5
  • [6] Bregman Voronoi Diagrams
    Boissonnat, Jean-Daniel
    Nielsen, Frank
    Nock, Richard
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (02) : 281 - 307
  • [7] Borwein J. M., 2010, ENCY MATH ITS APPL, V109
  • [8] PARTIALLY FINITE CONVEX-PROGRAMMING .1. QUASI RELATIVE INTERIORS AND DUALITY-THEORY
    BORWEIN, JM
    LEWIS, AS
    [J]. MATHEMATICAL PROGRAMMING, 1992, 57 (01) : 15 - 48
  • [9] Borwein JM., 2003, J Math Sci, V115, P2542, DOI [DOI 10.1023/A:1022988116044, 10.1023/A:1022988116044]
  • [10] Boyd L., 2004, CONVEX OPTIMIZATION