Ligand Functionalized Iron-Based Metal-Organic Frameworks for Efficient Electrocatalytic Oxygen Evolution

被引:21
作者
Qi, Qianglong [1 ,2 ]
Tai, Jun [2 ]
Hu, Jue [1 ]
Zhang, Zihan [1 ]
Dai, Linqing [1 ]
Song, Hongchuan [3 ]
Shao, Minhua [4 ,5 ]
Zhang, Chengxu [1 ]
Zhang, Libo [1 ]
机构
[1] Univ Sci & Technol, Fac Met & Energy Engn Kunming, Kunming 650093, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Sci, Kunming 650093, Yunnan, Peoples R China
[3] Yunnan Normal Univ, Sch Energy & Environm Sci, Kunming 650092, Yunnan, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[5] HKUST Shenzhen Res Inst, 9 Yuexing 1st RD South Area Hitech Pk Nanshan, Shenzhen 518057, Peoples R China
关键词
Defect Strain; Metal-organic frameworks; Ligand functionalization; Oxygen evolution reaction; Electrocatalysis; LAYERED DOUBLE HYDROXIDE; CATALYST; NANOPARTICLES; CONVERSION; NANOSHEETS; VACANCIES; SITES;
D O I
10.1002/cctc.202101242
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe-based metal-organic frameworks (MOFs) have been reported as potential catalysts for electrocatalytic oxygen evolution reaction (OER). However, it is still a great challenge to rationally design robust MOF catalysts with reasonable ligands due to the lack of research on tunable structure architecture. Herein, a series of Fe-based MOFs with tunable ligands have been designed and synthesized for OER for the first time. The functionalized Fe-MOFs-NHCHO and Fe-MOFs-NO2 derived catalysts show higher OER activity than the pristine Fe-MOFs. Remarkably, the best-performing Fe-MOFs-NHCHO shows an ultra-low overpotential of 246 mV at a current density of 10 mA cm(-2), which is 37 mV lower than Fe-MOFs. This research provides a new design concept based on MOFs materials, in the hope of finding excellent OER catalysts.
引用
收藏
页码:4976 / 4984
页数:9
相关论文
共 69 条
[1]   Cobalt-Modified Covalent Organic Framework as a Robust Water Oxidation Electrocatalyst [J].
Aiyappa, Harshitha Barike ;
Thote, Jayshri ;
Shinde, Digambar Balaji ;
Banerjee, Rahul ;
Kurungot, Sreekumar .
CHEMISTRY OF MATERIALS, 2016, 28 (12) :4375-4379
[2]  
[Anonymous], 2019, ANGEW CHEM, V131, P7125
[3]  
[Anonymous], 2020, ANGEW CHEM, V132, P5886
[4]  
[Anonymous], 2017, Angew Chem, DOI [DOI 10.1002/ANGE.201701477, DOI 10.1002/ANIE.201701477]
[5]   Iridium As Catalyst and Cocatalyst for Oxygen Evolution/Reduction in Acidic Polymer Electrolyte Membrane Electrolyzers and Fuel Cells [J].
Antolini, Ermete .
ACS CATALYSIS, 2014, 4 (05) :1426-1440
[6]   Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis [J].
Cheng, Weiren ;
Zhao, Xu ;
Su, Hui ;
Tang, Fumin ;
Che, Wei ;
Zhang, Hui ;
Liu, Qinghua .
NATURE ENERGY, 2019, 4 (02) :115-122
[7]   Two-dimensional transition metal dichalcogenide (TMD) nanosheets [J].
Chhowalla, Manish ;
Liu, Zhongfan ;
Zhang, Hua .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (09) :2584-2586
[8]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[9]   Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the Host-Guest Interactions [J].
Devic, Thomas ;
Horcajada, Patricia ;
Serre, Christian ;
Salles, Fabrice ;
Maurin, Guillaume ;
Moulin, Beatrice ;
Heurtaux, Daniela ;
Clet, Guillaume ;
Vimont, Alexandre ;
Greneche, Jean-Marc ;
Le Ouay, Benjamin ;
Moreau, Florian ;
Magnier, Emmanuel ;
Filinchuk, Yaroslav ;
Marrot, Jerome ;
Lavalley, Jean-Claude ;
Daturi, Marco ;
Ferey, Gerard .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (03) :1127-1136
[10]   2D Metal-Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis [J].
Dhakshinamoorth, Amarajothi ;
Asiri, Abdullah M. ;
Garcia, Hermenegildo .
ADVANCED MATERIALS, 2019, 31 (41)