Fundamentals of Nonparametric Bayesian Line Detection

被引:0
作者
van Rossum, Anne C. [1 ,2 ,3 ]
Lin, Hai Xiang [1 ,2 ,3 ]
Dubbeldam, Johan [1 ,2 ,3 ]
van den Herik, H. Jaap [1 ,2 ,3 ]
机构
[1] Distributed Organisms BV, Rotterdam, Netherlands
[2] Delft Univ Technol, Delft, Netherlands
[3] Leiden Univ, Leiden, Netherlands
来源
PATTERN RECOGNITION APPLICATIONS AND METHODS, ICPRAM 2016 | 2017年 / 10163卷
关键词
Bayesian nonparametrics; Line detection; DIRICHLET; INFERENCE; MIXTURE;
D O I
10.1007/978-3-319-53375-9_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Line detection is a fundamental problem in the world of computer vision. Many sophisticated methods have been proposed for performing inference over multiple lines; however, they are quite ad-hoc. Our fully Bayesian model extends a linear Bayesian regression model to an infinite mixture model and uses a Dirichlet Process as a prior. Gibbs sampling over non-unique parameters as well as over clusters is performed to fit lines of a fixed length, a variety of orientations, and a variable number of data points. Bayesian inference over data is optimal given a model and noise definition. Initial computer experiments show promising results with respect to clustering performance indicators such as the Rand Index, the Adjusted Rand Index, the Mirvin metric, and the Hubert metric. In future work, this mathematical foundation can be used to extend the algorithms to inference over multiple line segments and multiple volumetric objects.
引用
收藏
页码:175 / 193
页数:19
相关论文
共 50 条
  • [41] Nonparametric Bayesian modelling using skewed Dirichlet processes
    Iglesias, Pilar L.
    Orellana, Yasna
    Quintana, Fernando A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (03) : 1203 - 1214
  • [42] Bayesian nonparametric multiway regression for clustered binomial data
    Lock, Eric F.
    Bandyopadhyay, Dipankar
    STAT, 2021, 10 (01):
  • [43] Bayesian Nonparametric Modeling of Conditional Multidimensional Dependence Structures
    Barone, Rosario
    Dalla Valle, Luciana
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1361 - 1370
  • [44] Bayesian nonparametric monotone regression
    Wilson, Ander
    Tryner, Jessica
    L'Orange, Christian
    Volckens, John
    ENVIRONMETRICS, 2020, 31 (08)
  • [45] Bayesian nonparametric estimation of a copula
    Wu, Juan
    Wang, Xue
    Walker, Stephen G.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (01) : 103 - 116
  • [46] Innovation, growth and aggregate volatility from a Bayesian nonparametric perspective
    Lijoi, Antonio
    Muliere, Pietro
    Prunster, Igor
    Taddei, Filippo
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 2179 - 2203
  • [47] A Bayesian nonparametric approach for the analysis of multiple categorical item responses
    Waters, Andrew
    Fronczyk, Kassandra
    Guindani, Michele
    Baraniuk, Richard G.
    Vannucci, Marina
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 166 : 52 - 66
  • [48] Bayesian Nonparametric Panel Markov-Switching GARCH Models
    Casarin, Roberto
    Costantini, Mauro
    Osuntuyi, Anthony
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (01) : 135 - 146
  • [49] Bayesian nonparametric covariance estimation with noisy and nonsynchronous asset prices
    Liu, Jia
    JOURNAL OF RISK, 2021, 24 (01): : 1 - 23
  • [50] A Bayesian nonparametric method for model evaluation: application to genetic studies
    Shahbaba, Babak
    Gentles, Andrew J.
    Beyene, Joseph
    Plevritis, Sylvia K.
    Greenwood, Celia M. T.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (03) : 379 - 396