Fundamentals of Nonparametric Bayesian Line Detection

被引:0
作者
van Rossum, Anne C. [1 ,2 ,3 ]
Lin, Hai Xiang [1 ,2 ,3 ]
Dubbeldam, Johan [1 ,2 ,3 ]
van den Herik, H. Jaap [1 ,2 ,3 ]
机构
[1] Distributed Organisms BV, Rotterdam, Netherlands
[2] Delft Univ Technol, Delft, Netherlands
[3] Leiden Univ, Leiden, Netherlands
来源
PATTERN RECOGNITION APPLICATIONS AND METHODS, ICPRAM 2016 | 2017年 / 10163卷
关键词
Bayesian nonparametrics; Line detection; DIRICHLET; INFERENCE; MIXTURE;
D O I
10.1007/978-3-319-53375-9_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Line detection is a fundamental problem in the world of computer vision. Many sophisticated methods have been proposed for performing inference over multiple lines; however, they are quite ad-hoc. Our fully Bayesian model extends a linear Bayesian regression model to an infinite mixture model and uses a Dirichlet Process as a prior. Gibbs sampling over non-unique parameters as well as over clusters is performed to fit lines of a fixed length, a variety of orientations, and a variable number of data points. Bayesian inference over data is optimal given a model and noise definition. Initial computer experiments show promising results with respect to clustering performance indicators such as the Rand Index, the Adjusted Rand Index, the Mirvin metric, and the Hubert metric. In future work, this mathematical foundation can be used to extend the algorithms to inference over multiple line segments and multiple volumetric objects.
引用
收藏
页码:175 / 193
页数:19
相关论文
共 50 条
  • [31] Bayesian Nonparametric Hidden Semi-Markov Models
    Johnson, Matthew J.
    Willsky, Alan S.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 673 - 701
  • [32] Two-sample Bayesian Nonparametric Hypothesis Testing
    Holmes, Chris C.
    Caron, Francois
    Griffin, Jim E.
    Stephens, David A.
    BAYESIAN ANALYSIS, 2015, 10 (02): : 297 - 320
  • [33] Discriminative Bayesian Nonparametric Clustering
    Nguyen, Vu
    Phung, Dinh
    Le, Trung
    Bui, Hung
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2550 - 2556
  • [34] Nonparametric Bayesian inference in applications
    Mueeller, Peter
    Quintana, Fernando A.
    Page, Garritt
    STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02) : 175 - 206
  • [35] Bayesian nonparametric hierarchical modeling
    Dunson, David B.
    BIOMETRICAL JOURNAL, 2009, 51 (02) : 273 - 284
  • [36] BAYESIAN NONPARAMETRIC LANGUAGE MODELS
    Chang, Ying-Lan
    Chien, Jen-Tzung
    2012 8TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING, 2012, : 188 - 192
  • [37] Bayesian Nonparametric Sequential Search
    Onzo, Kohei
    Ansari, Asim
    JOURNAL OF MARKETING RESEARCH, 2025, 62 (02) : 362 - 385
  • [38] Nonparametric Bayesian Clustering Ensembles
    Wang, Pu
    Domeniconi, Carlotta
    Laskey, Kathryn Blackmond
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2010, 6323 : 435 - 450
  • [39] Bayesian nonparametric multiple testing
    Cipolli, William, III
    Hanson, Timothy
    McLain, Alexander C.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 101 : 64 - 79
  • [40] A BAYESIAN NONPARAMETRIC MODEL FOR UNSUPERVISED CHANGE DETECTION OF FULLY POLARIMETRIC SAR IMAGES
    Bdiri, Wassim
    Bouhlel, Nizar
    Meric, Stephane
    Pottier, Eric
    Kallel, Fathi
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 2789 - 2794