Fundamentals of Nonparametric Bayesian Line Detection

被引:0
|
作者
van Rossum, Anne C. [1 ,2 ,3 ]
Lin, Hai Xiang [1 ,2 ,3 ]
Dubbeldam, Johan [1 ,2 ,3 ]
van den Herik, H. Jaap [1 ,2 ,3 ]
机构
[1] Distributed Organisms BV, Rotterdam, Netherlands
[2] Delft Univ Technol, Delft, Netherlands
[3] Leiden Univ, Leiden, Netherlands
来源
PATTERN RECOGNITION APPLICATIONS AND METHODS, ICPRAM 2016 | 2017年 / 10163卷
关键词
Bayesian nonparametrics; Line detection; DIRICHLET; INFERENCE; MIXTURE;
D O I
10.1007/978-3-319-53375-9_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Line detection is a fundamental problem in the world of computer vision. Many sophisticated methods have been proposed for performing inference over multiple lines; however, they are quite ad-hoc. Our fully Bayesian model extends a linear Bayesian regression model to an infinite mixture model and uses a Dirichlet Process as a prior. Gibbs sampling over non-unique parameters as well as over clusters is performed to fit lines of a fixed length, a variety of orientations, and a variable number of data points. Bayesian inference over data is optimal given a model and noise definition. Initial computer experiments show promising results with respect to clustering performance indicators such as the Rand Index, the Adjusted Rand Index, the Mirvin metric, and the Hubert metric. In future work, this mathematical foundation can be used to extend the algorithms to inference over multiple line segments and multiple volumetric objects.
引用
收藏
页码:175 / 193
页数:19
相关论文
共 50 条
  • [21] Nonparametric Bayesian approach to the detection of change point in statistical process control
    Suleiman, Issah N.
    Bakir, M. Akif
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (03): : 525 - 545
  • [22] Bayesian nonparametric analysis of Kingman's coalescent
    Favaro, Stefano
    Feng, Shui
    Jenkins, Paul A.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02): : 1087 - 1115
  • [23] Bayesian nonparametric mixture of experts for inverse problems
    Nguyen, Trungtin
    Forbes, Florence
    Arbel, Julyan
    Nguyen, Hien Duy
    JOURNAL OF NONPARAMETRIC STATISTICS, 2024,
  • [24] Bayesian nonparametric variable selection as an exploratory tool for discovering differentially expressed genes
    Shahbaba, Babak
    Johnson, Wesley O.
    STATISTICS IN MEDICINE, 2013, 32 (12) : 2114 - 2126
  • [25] Bayesian nonparametric adjustment of confounding
    Kim, Chanmin
    Tec, Mauricio
    Zigler, Corwin
    BIOMETRICS, 2023, 79 (04) : 3252 - 3265
  • [26] Bayesian regression with nonparametric heteroskedasticity
    Norets, Andriy
    JOURNAL OF ECONOMETRICS, 2015, 185 (02) : 409 - 419
  • [27] Bayesian nonparametric Erlang mixture modeling for survival analysis
    Li, Yunzhe
    Lee, Juhee
    Kottas, Athanasios
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 191
  • [28] Nonparametric Bayesian Deep Visualization
    Ishizuka, Haruya
    Mochihashi, Daichi
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 13713 : 121 - 137
  • [29] Bayesian nonparametric change point detection for multivariate time series with missing observations
    Corradin, Riccardo
    Danese, Luca
    Ongaro, Andrea
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 143 : 26 - 43
  • [30] A Nonparametric Bayesian Framework for Uncertainty Quantification in Stochastic Simulation
    Xie, Wei
    Li, Cheng
    Wu, Yuefeng
    Zhang, Pu
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (04) : 1527 - 1552