Fundamentals of Nonparametric Bayesian Line Detection

被引:0
|
作者
van Rossum, Anne C. [1 ,2 ,3 ]
Lin, Hai Xiang [1 ,2 ,3 ]
Dubbeldam, Johan [1 ,2 ,3 ]
van den Herik, H. Jaap [1 ,2 ,3 ]
机构
[1] Distributed Organisms BV, Rotterdam, Netherlands
[2] Delft Univ Technol, Delft, Netherlands
[3] Leiden Univ, Leiden, Netherlands
来源
PATTERN RECOGNITION APPLICATIONS AND METHODS, ICPRAM 2016 | 2017年 / 10163卷
关键词
Bayesian nonparametrics; Line detection; DIRICHLET; INFERENCE; MIXTURE;
D O I
10.1007/978-3-319-53375-9_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Line detection is a fundamental problem in the world of computer vision. Many sophisticated methods have been proposed for performing inference over multiple lines; however, they are quite ad-hoc. Our fully Bayesian model extends a linear Bayesian regression model to an infinite mixture model and uses a Dirichlet Process as a prior. Gibbs sampling over non-unique parameters as well as over clusters is performed to fit lines of a fixed length, a variety of orientations, and a variable number of data points. Bayesian inference over data is optimal given a model and noise definition. Initial computer experiments show promising results with respect to clustering performance indicators such as the Rand Index, the Adjusted Rand Index, the Mirvin metric, and the Hubert metric. In future work, this mathematical foundation can be used to extend the algorithms to inference over multiple line segments and multiple volumetric objects.
引用
收藏
页码:175 / 193
页数:19
相关论文
共 50 条
  • [11] Malware Detection Using Nonparametric Bayesian Clustering and Classification Techniques
    Kao, Yimin
    Reich, Brian
    Storlie, Curtis
    Anderson, Blake
    TECHNOMETRICS, 2015, 57 (04) : 535 - 546
  • [12] Nonparametric Bayesian inference for mean residual life functions in survival analysis
    Poynor, Valerie
    Kottas, Athanasios
    BIOSTATISTICS, 2019, 20 (02) : 240 - 255
  • [13] Nonparametric Bayesian online change point detection using kernel density estimation with nonparametric hazard function
    Prabpon, Naruesorn
    Homsud, Kitakorn
    Vatiwutipong, Pat
    STATISTICS AND COMPUTING, 2024, 34 (02)
  • [14] A nonparametric Bayesian methodology for regression discontinuity designs
    Branson, Zach
    Rischard, Maxime
    Bornn, Luke
    Miratrix, Luke W.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 202 : 14 - 30
  • [15] Bayesian Nonparametric Modeling for Multivariate Ordinal Regression
    DeYoreo, Maria
    Kottas, Athanasios
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) : 71 - 84
  • [16] UNCERTAINTY QUANTIFICATION THROUGH BAYESIAN NONPARAMETRIC MODELLING
    Kockova, E.
    Kucerova, A.
    Sykora, J.
    ENGINEERING MECHANICS 2020 (IM2020), 2020, : 274 - 277
  • [17] Bayesian nonparametric trees for principal causal effects
    Kim, Chanmin
    Zigler, Corwin
    BIOMETRICS, 2025, 81 (01)
  • [18] HEAVY-TAILED BAYESIAN NONPARAMETRIC ADAPTATION
    Agapiou, Sergios
    Castillo, Ismael
    ANNALS OF STATISTICS, 2024, 52 (04) : 1433 - 1459
  • [19] Robustifying Bayesian Nonparametric Mixtures for Count Data
    Canale, Antonio
    Prunster, Igor
    BIOMETRICS, 2017, 73 (01) : 174 - 184
  • [20] Bayesian Nonparametric Calibration and Combination of Predictive Distributions
    Bassetti, Federico
    Casarin, Roberto
    Ravazzolo, Francesco
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (522) : 675 - 685