Fundamentals of Nonparametric Bayesian Line Detection

被引:0
|
作者
van Rossum, Anne C. [1 ,2 ,3 ]
Lin, Hai Xiang [1 ,2 ,3 ]
Dubbeldam, Johan [1 ,2 ,3 ]
van den Herik, H. Jaap [1 ,2 ,3 ]
机构
[1] Distributed Organisms BV, Rotterdam, Netherlands
[2] Delft Univ Technol, Delft, Netherlands
[3] Leiden Univ, Leiden, Netherlands
来源
PATTERN RECOGNITION APPLICATIONS AND METHODS, ICPRAM 2016 | 2017年 / 10163卷
关键词
Bayesian nonparametrics; Line detection; DIRICHLET; INFERENCE; MIXTURE;
D O I
10.1007/978-3-319-53375-9_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Line detection is a fundamental problem in the world of computer vision. Many sophisticated methods have been proposed for performing inference over multiple lines; however, they are quite ad-hoc. Our fully Bayesian model extends a linear Bayesian regression model to an infinite mixture model and uses a Dirichlet Process as a prior. Gibbs sampling over non-unique parameters as well as over clusters is performed to fit lines of a fixed length, a variety of orientations, and a variable number of data points. Bayesian inference over data is optimal given a model and noise definition. Initial computer experiments show promising results with respect to clustering performance indicators such as the Rand Index, the Adjusted Rand Index, the Mirvin metric, and the Hubert metric. In future work, this mathematical foundation can be used to extend the algorithms to inference over multiple line segments and multiple volumetric objects.
引用
收藏
页码:175 / 193
页数:19
相关论文
共 50 条
  • [1] A BAYESIAN NONPARAMETRIC TEST FOR CONDITIONAL INDEPENDENCE
    Teymur, Onur
    Filippi, Sarah
    FOUNDATIONS OF DATA SCIENCE, 2020, 2 (02): : 155 - 172
  • [2] Bayesian Nonparametric Crowdsourcing
    Moreno, Pablo G.
    Artes-Rodriguez, Antonio
    Teh, Yee Whye
    Perez-Cruz, Fernando
    JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 1607 - 1627
  • [3] Computational challenges and temporal dependence in Bayesian nonparametric models
    Argiento, Raffaele
    Ruggiero, Matteo
    STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02) : 231 - 238
  • [4] A Bayesian nonparametric causal model
    Karabatsos, George
    Walker, Stephen G.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (04) : 925 - 934
  • [5] A tutorial on Bayesian nonparametric models
    Gershman, Samuel J.
    Blei, David M.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2012, 56 (01) : 1 - 12
  • [6] Bayesian Nonparametric Longitudinal Data Analysis
    Quintana, Fernando A.
    Johnson, Wesley O.
    Waetjen, L. Elaine
    Gold, Ellen B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (515) : 1168 - 1181
  • [7] More nonparametric Bayesian inference in applications
    Guindani, Michele
    Johnson, Wesley O.
    STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02) : 239 - 251
  • [8] Bayesian nonparametric sparse VAR models
    Billio, Monica
    Casarin, Roberta
    Rossini, Luca
    JOURNAL OF ECONOMETRICS, 2019, 212 (01) : 97 - 115
  • [9] Scalable Bayesian Nonparametric Clustering and Classification
    Ni, Yang
    Muller, Peter
    Diesendruck, Maurice
    Williamson, Sinead
    Zhu, Yitan
    Ji, Yuan
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (01) : 53 - 65
  • [10] A Bayesian Nonparametric Approach to Test Equating
    Karabatsos, George
    Walker, Stephen G.
    PSYCHOMETRIKA, 2009, 74 (02) : 211 - 232