Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing

被引:27
作者
Avkhadiev, A. [1 ,2 ]
Shanahan, P. E. [1 ,2 ]
Young, R. D. [3 ]
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Univ Adelaide, Dept Phys, CSSM, Adelaide, SA 5005, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
SIMULATIONS;
D O I
10.1103/PhysRevLett.124.080501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The only known way to study quantum field theories in nonperturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantum computations on noisy intermediate-scale quantum era hardware can be used to accelerate larger-scale classical field theory calculations through the construction of optimized interpolating operators. The method is implemented and studied in the context of the 1 + 1-dimensional Schwinger model, a simple field theory which shares key features with the standard model of nuclear and particle physics.
引用
收藏
页数:6
相关论文
共 26 条
[1]  
[Anonymous], ARXIV190208191
[2]   On the generalized eigenvalue method for energies and matrix elements in lattice field theory [J].
Blossier, Benoit ;
Della Morte, Michele ;
von Hippel, Georg ;
Mendes, Tereza ;
Sommer, Rainer .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (04)
[3]   QCD as a quantum link model [J].
Brower, R ;
Chandrasekharan, S ;
Wiese, UJ .
PHYSICAL REVIEW D, 1999, 60 (09)
[4]  
Carlson J., 2018, TECHNICAL REPORT
[5]  
Gattringer C, 2010, LECT NOTES PHYS, V788, P1, DOI 10.1007/978-3-642-01850-3_1
[6]   STAGGERED MESONS [J].
GOLTERMAN, MFL .
NUCLEAR PHYSICS B, 1986, 273 (3-4) :663-676
[7]   Quantum Simulation of a Lattice Schwinger Model in a Chain of Trapped Ions [J].
Hauke, P. ;
Marcos, D. ;
Dalmonte, M. ;
Zoller, P. .
PHYSICAL REVIEW X, 2013, 3 (04)
[8]   MONTE-CARLO SIMULATIONS OF ONE-DIMENSIONAL FERMION SYSTEMS [J].
HIRSCH, JE ;
SUGAR, RL ;
SCALAPINO, DJ ;
BLANKENBECLER, R .
PHYSICAL REVIEW B, 1982, 26 (09) :5033-5055
[9]  
Joo B., ARXIV190409725
[10]   HAMILTONIAN FORMULATION OF WILSONS LATTICE GAUGE THEORIES [J].
KOGUT, J ;
SUSSKIND, L .
PHYSICAL REVIEW D, 1975, 11 (02) :395-408