Generalized parabolic bundles and applications .2.

被引:24
作者
Bhosle, UN [1 ]
机构
[1] TATA INST FUNDAMENTAL RES, SCH MATH, BOMBAY 400005, MAHARASHTRA, INDIA
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 1996年 / 106卷 / 04期
关键词
generalized parabolic bundles; nodal curves; torsionfree sheaves;
D O I
10.1007/BF02837696
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of the moduli space M(n, d) of semistable generalised parabolic bundles (GPBs) of rank, n, degree d of certain general type on a smooth curve. We study interesting cases of the moduli spaces M(n, a) and find explicit geometric descriptions for them in low ranks and genera. We define tensor products, symmetric powers etc. and the determinant of a GPB. We also define fixed determinant subvarieties M(L)(n, d), L being a GPB of rank 1. We apply these results to study of moduli spaces of torsionfree sheaves on a reduced irreducible curve Y with nodes and ordinary cusps as singularities. We also study relations among these moduli spaces (rank 2) as polarization varies over [0, 1].
引用
收藏
页码:403 / 420
页数:18
相关论文
共 18 条
[1]  
Bass H., 1963, MATH Z, V82, P8, DOI DOI 10.1007/BF01112819
[2]   PARABOLIC SHEAVES ON HIGHER DIMENSIONAL VARIETIES [J].
BHOSLE, U .
MATHEMATISCHE ANNALEN, 1992, 293 (01) :177-192
[3]   GENERALIZED PARABOLIC BUNDLES AND APPLICATIONS TO TORSION-FREE SHEAVES ON NODAL CURVES [J].
BHOSLE, U .
ARKIV FOR MATEMATIK, 1992, 30 (02) :187-215
[4]   PARABOLIC VECTOR-BUNDLES ON CURVES [J].
BHOSLE, UN .
ARKIV FOR MATEMATIK, 1989, 27 (01) :15-22
[5]   REPRESENTATIONS OF THE FUNDAMENTAL GROUP AND VECTOR-BUNDLES [J].
BHOSLE, UN .
MATHEMATISCHE ANNALEN, 1995, 302 (04) :601-608
[6]  
BHOSLE UN, 1994, IN PRESS P BARC C
[7]  
BHOSLE UN, 1993, MODULI VECTOR BUNDLE
[8]  
DSOUZA C, 1979, P INDIAN AS-MATH SCI, V88, P419
[9]   MODULI OF VECTOR BUNDLES ON AN ALGEBRAIC SURFACE [J].
GIESEKER, D .
ANNALS OF MATHEMATICS, 1977, 106 (01) :45-60
[10]   MODULI OF VECTOR-BUNDLES ON CURVES WITH PARABOLIC STRUCTURES [J].
MEHTA, VB ;
SESHADRI, CS .
MATHEMATISCHE ANNALEN, 1980, 248 (03) :205-239