Wavelet decomposition and embeddings of generalised Besov-Morrey spaces

被引:8
作者
Haroske, Dorothee D. [1 ]
Moura, Susana D. [2 ]
Skrzypczak, Leszek [3 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Math, D-07737 Jena, Germany
[2] Univ Coimbra, Dept Math, EC Santa Cruz, CMUC, P-3001501 Coimbra, Portugal
[3] Adam Mickiewicz Univ, Fac Math & Comp Sci, Ul Uniwersytetu Poznanskiego 4, PL-61614 Poznan, Poland
关键词
Besov-Morrey spaces; Generalised Morrey spaces; Embeddings; Wavelet decompositions; INTEGRAL-OPERATORS; EQUATIONS;
D O I
10.1016/j.na.2021.112590
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study embeddings between generalised Besov-Morrey spaces Ns phi,p,q(Rd). Both sufficient and necessary conditions for the embeddings are proved. Embeddings of the Besov-Morrey spaces into the Lebesgue spaces Lr(Rd) are also considered. Our approach requires a wavelet characterisation of the spaces which we establish for the system of Daubechies wavelets. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:26
相关论文
共 33 条
[11]   Generalized Besov-Morrey spaces and generalized Triebel-Lizorkin-Morrey spaces on domains [J].
Izuki, Mitsuo ;
Noi, Takahiro .
MATHEMATISCHE NACHRICHTEN, 2019, 292 (10) :2212-2251
[12]   Estimates for nondivergence elliptic equations with VMO coefficients in generalized grand Morrey spaces [J].
Kokilashvili, Vakhtang ;
Meskhi, Alexander ;
Rafeiro, Humberto .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (08) :1169-1184
[13]   SEMILINEAR HEAT-EQUATIONS AND THE NAVIER-STOKES EQUATION WITH DISTRIBUTIONS IN NEW FUNCTION-SPACES AS INITIAL DATA [J].
KOZONO, H ;
YAMAZAKI, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (5-6) :959-1014
[14]   Boundedness of integral operators on generalized Morrey spaces and its application to Schrodinger operators [J].
Kurata, K ;
Nishigaki, S ;
Sugano, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) :1125-1134
[15]   A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces [J].
Liang, Yiyu ;
Yang, Dachun ;
Yuan, Wen ;
Sawano, Yoshihiro ;
Ullrich, Tino .
DISSERTATIONES MATHEMATICAE, 2013, (489) :1-114
[16]   Besov-Morrey spaces: Function space theory and applications to non-linear PDE [J].
Mazzucato, AL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (04) :1297-1364
[17]  
Mizuhara T., 1990, HARMONIC ANAL P C HE, ppp. 183
[18]   HARDY-LITTLEWOOD MAXIMAL OPERATOR, SINGULAR INTEGRAL-OPERATORS AND THE RIESZ-POTENTIALS ON GENERALIZED MORREY SPACES [J].
NAKAI, E .
MATHEMATISCHE NACHRICHTEN, 1994, 166 :95-103
[19]   Generalized Morrey spaces and trace operator [J].
Nakamura, Shohei ;
Noi, Takahiro ;
Sawano, Yoshihiro .
SCIENCE CHINA-MATHEMATICS, 2016, 59 (02) :281-336
[20]  
Netrusov Y., 1987, J. Sov. Math, V36, P270, DOI DOI 10.1007/BF01091807