On non-defectivity of certain Segre-Veronese varieties

被引:17
作者
Abo, Hirotachi [1 ]
机构
[1] Univ Idaho, Dept Math, Moscow, ID 83844 USA
基金
美国国家科学基金会;
关键词
Secant varieties; Segre-Veronese varieties; Non-defectivity; SECANT VARIETIES;
D O I
10.1016/j.jsc.2010.06.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let X(m,n) be the Segre-Veronese variety P(m) x P(n) embedded by the morphism given by O(1,2) and let sigma(s)(X(m,n)) denote the sth secant variety of X(m,n). In this paper, we prove that if m = n or m = n + 1, then sigma(s)(X(m,n)) has the expected dimension except for sigma(6)(X(4,3)). As an immediate consequence, we will give functions s(1)(m, n) <= s(2)(m, n) such that if s <= s(1) (m, n) or if s >= s(2)(m, n), then sigma(s)(X(m,n)) has the expected dimension for all positive integers m and n. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1254 / 1269
页数:16
相关论文
共 15 条
[1]  
Abo H., J ALGEBRAIC IN PRESS
[2]  
Abo H, 2009, T AM MATH SOC, V361, P767
[3]   Secant Varieties of Segre-Veronese Varieties Pm x Pn Embedded by O (1,2) [J].
Abo, Hirotachi ;
Brambilla, Maria Chlara .
EXPERIMENTAL MATHEMATICS, 2009, 18 (03) :369-384
[4]   About the defectivity of certain Segre-Veronese varieties [J].
Abrescia, Silvia .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (05) :961-974
[5]  
Alexander J., 1995, J. Algebraic Geom., V4, P201
[6]  
BALLICO E., 2006, Port. Math., V63, P101
[7]   Secant dimensions of minimal orbits: Computations and conjectures [J].
Baur, Karin ;
Draisma, Jan ;
De Graaf, Willem A. .
EXPERIMENTAL MATHEMATICS, 2007, 16 (02) :239-250
[8]   On the Alexander-Hirschowitz theorem [J].
Brambilla, Maria Chiara ;
Ottaviani, Giorgio .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (05) :1229-1251
[9]   On Waring's problem for several algebraic forms [J].
Carlini, E ;
Chipalkatti, J .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (03) :494-517
[10]   On the ideals of secant varieties to certain rational varieties [J].
Catalisano, M. V. ;
Geramita, A. V. ;
Gimigliano, A. .
JOURNAL OF ALGEBRA, 2008, 319 (05) :1913-1931