Classification of lung nodule malignancy in computed tomography imaging utilising generative adversarial networks and semi-supervised transfer learning

被引:34
作者
Apostolopoulos, Ioannis D. [1 ]
Papathanasiou, Nikolaos D. [2 ]
Panayiotakis, George S. [1 ]
机构
[1] Univ Patras, Sch Med, Dept Med Phys, Patras 26504, Greece
[2] Univ Hosp Patras, Dept Nucl Med, Patras 26504, Greece
关键词
Lung nodule classification; Data augmentation; Generative adversarial networks; Medical image classification; Semi-supervised learning;
D O I
10.1016/j.bbe.2021.08.006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The pulmonary nodules' malignancy rating is commonly confined in patient follow-up; examining the nodule's activity is estimated with the Positron Emission Tomography (PET) system or biopsy. However, these strategies are usually after the initial detection of the malignant nodules acquired from the Computed Tomography (CT) scan. In this study, a Deep Learning methodology to address the challenge of the automatic characterisation of Solitary Pulmonary Nodules (SPN) detected in CT scans is proposed. The research methodology is based on Convolutional Neural Networks, which have proven to be excellent automatic feature extractors for medical images. The publicly available CT dataset, called Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), and a small CT scan dataset derived from a PET/CT system, is considered the classification target. New, realistic nodule representations are generated employing Deep Convolutional Generative Adversarial Networks to circumvent the shortage of large-scale data to train robust CNNs. Besides, a hierarchical CNN called Feature Fusion VGG19 (FF-VGG19) was developed to enhance feature extraction of the CNN proposed by the Visual Geometry Group (VGG). Moreover, the generated nodule images are separated into two classes by utilising a semi-supervised approach, called self-training, to tackle weak labelling due to DC-GAN inefficiencies. The DC-GAN can generate realistic SPNs, as the experts could only distinguish 23% of the synthetic nodule images. As a result, the classification accuracy of FF-VGG19 on the LIDCIDRI dataset increases by +7%, reaching 92.07%, while the classification accuracy on the CT dataset is increased by 5%, reaching 84,3%. (c) 2021 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1243 / 1257
页数:15
相关论文
共 40 条
[1]   Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks [J].
Apostolopoulos, Ioannis D. ;
Mpesiana, Tzani A. .
PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2020, 43 (02) :635-640
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]   Synthesis of Positron Emission Tomography (PET) Images via Multi-channel Generative Adversarial Networks (GANs) [J].
Bi, Lei ;
Kim, Jinman ;
Kumar, Ashnil ;
Feng, Dagan ;
Fulham, Michael .
MOLECULAR IMAGING, RECONSTRUCTION AND ANALYSIS OF MOVING BODY ORGANS, AND STROKE IMAGING AND TREATMENT, 2017, 10555 :43-51
[4]   Highly accurate model for prediction of lung nodule malignancy with CT scans [J].
Causey, Jason L. ;
Zhang, Junyu ;
Ma, Shiqian ;
Jiang, Bo ;
Qualls, Jake A. ;
Politte, David G. ;
Prior, Fred ;
Zhang, Shuzhong ;
Huang, Xiuzhen .
SCIENTIFIC REPORTS, 2018, 8
[5]  
Chen X, 2016, ADV NEUR IN, V29
[6]  
Cheng JZ, 2016, SCI REP-UK, V6, DOI [10.1038/srep25671, 10.1038/srep24454]
[7]  
Chuquicusma MJM, 2018, I S BIOMED IMAGING, P240, DOI 10.1109/ISBI.2018.8363564
[8]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[9]   Lung nodules diagnosis based on evolutionary convolutional neural network [J].
da Silva, Giovanni L. F. ;
da Silva Neto, Otilio P. ;
Silva, Aristofanes C. ;
de Paiva, Anselmo C. ;
Gattass, Marcelo .
MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (18) :19039-19055
[10]  
Dey R, 2018, I S BIOMED IMAGING, P774, DOI 10.1109/ISBI.2018.8363687