Laplacian eigenvalue distribution and graph parameters

被引:11
作者
Ahanjideh, M. [1 ]
Akbari, S. [2 ]
Fakharan, M. H. [2 ]
Trevisan, V. [3 ]
机构
[1] Bogazici Univ, Dept Ind Engn, Istanbul, Turkey
[2] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[3] Univ Fed Rio Grande do Sul, Inst Matemat & Estat, Porto Alegre, RS, Brazil
关键词
Laplacian eigenvalue; DOMINATION NUMBER; SPECTRUM;
D O I
10.1016/j.laa.2021.09.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph and Ibe an interval. In this paper, we present bounds for the number m(G)I of Laplacian eigenvalues in Iin terms of structural parameters of G. In particular, we show that m(G)(n - alpha(G), n] <= n - alpha(G) and m(G)(n - d(G) + 3, n] <= n - d(G) - 1, where alpha(G) and d(G) denote the independence number and the diameter of G, respectively. Also, we characterize bipartite graphs that satisfy m(G)[0, 1) = alpha(G). Further, in the case of triangle-free or quadrangle-free, we prove that m(G)( n - 1, n] <= 1. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 18 条
[1]   Laplacian Distribution and Domination [J].
Cardoso, Domingos M. ;
Jacobs, David P. ;
Trevisan, Vilmar .
GRAPHS AND COMBINATORICS, 2017, 33 (05) :1283-1295
[2]   The Laplacian spectrum of a graph [J].
Das, KC .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (5-6) :715-724
[3]   An improved upper bound for Laplacian graph eigenvalues [J].
Das, KC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 368 :269-278
[4]  
Emilio A.L., 2017, ELECT NOTES DISCRETE, V62, P297
[5]  
Fink J. F., 1985, Periodica Mathematica Hungarica, V16, P287, DOI 10.1007/BF01848079
[6]   THE LAPLACIAN SPECTRUM OF A GRAPH [J].
GRONE, R ;
MERRIS, R ;
SUNDER, VS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :218-238
[7]   THE LAPLACIAN SPECTRUM OF A GRAPH .2. [J].
GRONE, R ;
MERRIS, R .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (02) :221-229
[8]   ORDERING TREES BY ALGEBRAIC CONNECTIVITY [J].
GRONE, R ;
MERRIS, R .
GRAPHS AND COMBINATORICS, 1990, 6 (03) :229-237
[9]   Domination number and Laplacian eigenvalue distribution [J].
Hedetniemi, Stephen T. ;
Jacobs, David P. ;
Trevisan, Vilmar .
EUROPEAN JOURNAL OF COMBINATORICS, 2016, 53 :66-71
[10]   Most Laplacian eigenvalues of a tree are small [J].
Jacobs, David P. ;
Oliveira, Elismar R. ;
Trevisan, Vilmar .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 146 :1-33